Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

PDF

University of Massachusetts Amherst

2014

Galaxies: abundances

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Budget And Accounting Of Metals At Z~0: Results From The Cos-Halos Survey, Molly S. Peeples, Jessica K. Werk, Jason Tumlinson, Benjamin D. Oppenheimer, J. Xavier Prochaska, Neal S. Katz, David H. Weinberg Jan 2014

Budget And Accounting Of Metals At Z~0: Results From The Cos-Halos Survey, Molly S. Peeples, Jessica K. Werk, Jason Tumlinson, Benjamin D. Oppenheimer, J. Xavier Prochaska, Neal S. Katz, David H. Weinberg

Neal S. Katz

We present a budget and accounting of metals in and around star-forming galaxies at z ~ 0. We combine empirically derived star formation histories with updated supernova and asymptotic giant branch yields and rates to estimate the total mass of metals produced by galaxies with present-day stellar mass of 109.3-1011.6 M☉. On the accounting side of the ledger, we show that a surprisingly constant 20%-25% mass fraction of produced metals remain in galaxies' stars, interstellar gas and interstellar dust, with little dependence of this fraction on the galaxy stellar mass (omitting those metals immediately locked up in remnants). Thus, the …


The Neutral Hydrogen Content Of Galaxies In Cosmological Hydrodynamic Simulations, Romeel Dave, Neal S. Katz, Benjamin D. Oppenheimer, Juna A. Kollmeier, David H. Weinberg Jan 2014

The Neutral Hydrogen Content Of Galaxies In Cosmological Hydrodynamic Simulations, Romeel Dave, Neal S. Katz, Benjamin D. Oppenheimer, Juna A. Kollmeier, David H. Weinberg

Neal S. Katz

We examine the global H I properties of galaxies in quarter billion particle cosmological simulations using GADGET-2, focusing on how galactic outflows impact H I content. We consider four outflow models, including a new one (ezw) motivated by recent interstellar medium simulations in which the wind speed and mass loading factor scale as expected for momentum-driven outflows for larger galaxies and energy-driven outflows for dwarfs (σ < 75 km s−1). To obtain predicted H I masses, we employ a simple but effective local correction for particle self-shielding and an observationally constrained transition from neutral to molecular hydrogen. Our ezw simulation produces an H I mass function whose faint-end slope of −1.3 agrees well with observations from the Arecibo Fast Legacy ALFA survey; other models agree less well. Satellite galaxies have a bimodal distribution in H I fraction versus halo mass, with smaller satellites and/or those in larger haloes more often being H I deficient. At a given stellar mass, H I content correlates with the star formation rate and inversely correlates with metallicity, as expected if driven by stochasticity in the accretion rate. To higher redshifts, massive H I galaxies disappear and the mass function steepens. The global cosmic H I density conspires to remain fairly constant from z ∼ 5 → 0, but the relative contribution from smaller galaxies increases with redshift.