Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

PDF

Dartmouth College

2016

Quasars

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

A Scuba-2 Survey Of Felobal Qsos. Are Felobals In A ‘Transition Phase’ Between Ulirgs And Qsos?, Giulio Violino, Kristen E. K. Coppin, Jason A. Stevens, Duncan Farrah, James E. Geach, Dave M. Alexander, Ryan Hickox Dec 2016

A Scuba-2 Survey Of Felobal Qsos. Are Felobals In A ‘Transition Phase’ Between Ulirgs And Qsos?, Giulio Violino, Kristen E. K. Coppin, Jason A. Stevens, Duncan Farrah, James E. Geach, Dave M. Alexander, Ryan Hickox

Dartmouth Scholarship

It is thought that a class of broad absorption line (BAL) QSOs, characterised by Fe absorption features in their UV spectra (called `FeLoBALs'), could mark a transition stage between the end of an obscured starburst event and a youthful QSO beginning to shed its dust cocoon, where Fe has been injected into the interstellar medium by the starburst. To test this hypothesis we have undertaken deep SCUBA-2 850 μm observations of a sample of 17 FeLoBAL QSOs with 0.89 ≤ z ≤ 2.78 and -23.31 ≤ MB ≤-28.50 to directly detect an excess in the thermal emission of the dust …


Star Formation In Quasar Hosts And The Origin Of Radio Emission In Radio-Quiet Quasars, Nadia L. Zakamska, Kelly Lampayan, Andreea Petric, Daniel Dicken, Jenny E. Greene, Timothy M. Heckman, Ryan C. Hickox Jul 2016

Star Formation In Quasar Hosts And The Origin Of Radio Emission In Radio-Quiet Quasars, Nadia L. Zakamska, Kelly Lampayan, Andreea Petric, Daniel Dicken, Jenny E. Greene, Timothy M. Heckman, Ryan C. Hickox

Dartmouth Scholarship

Radio emission from radio-quiet quasars may be due to star formation in the quasar host galaxy, to a jet launched by the supermassive black hole, or to relativistic particles accelerated in a wide-angle radiatively-driven outflow. In this paper we examine whether radio emission from radio-quiet quasars is a byproduct of star formation in their hosts. To this end we use infrared spectroscopy and photometry from Spitzer and Herschel to estimate or place upper limits on star formation rates in hosts of ~300 obscured and unobscured quasars at z<1. We find that low-ionization forbidden emission lines such as [NeII] and [NeIII] are likely dominated by quasar ionization and do not provide reliable star formation diagnostics in quasar hosts, while PAH emission features may be suppressed due to the destruction of PAH molecules by the quasar radiation field. While the bolometric luminosities of our sources are dominated by the quasars, the 160 micron fluxes are likely dominated by star formation, but they too should be used with caution. We estimate median star formation rates to be 6-29 Msun/year, with obscured quasars at the high end of this range. This star formation rate is insufficient to explain the observed radio emission from quasars by an order of magnitude, with log(L_radio, observed/L_radio, SF)=0.6-1.3 depending on quasar type and star formation estimator. Although radio-quiet quasars in our sample lie close to the 8-1000 micron infrared / radio correlation characteristic of the star-forming galaxies, both their infrared emission and their radio emission are dominated by the quasar activity, not by the host galaxy.


Peering Through The Dust: Nustar Observations Of Two First-2mass Red Quasars, Stephanie M. Lamassa, Angelo Ricarte, Eilat Glikman, C. Megan Urry, Daniel Stern, Tahir Yaqoob, George B. Lansbury, Francesca Civano Mar 2016

Peering Through The Dust: Nustar Observations Of Two First-2mass Red Quasars, Stephanie M. Lamassa, Angelo Ricarte, Eilat Glikman, C. Megan Urry, Daniel Stern, Tahir Yaqoob, George B. Lansbury, Francesca Civano

Dartmouth Scholarship

Some reddened quasars appear to be transitional objects in the merger-induced black hole growth/galaxy evolution paradigm, where a heavily obscured nucleus starts to be unveiled by powerful quasar winds evacuating the surrounding cocoon of dust and gas. Hard X-ray observations are able to peer through this gas and dust, revealing the properties of circumnuclear obscuration. Here, we present NuSTAR and XMM-Newton/Chandra observations of FIRST-2MASS selected red quasars F2M 0830+3759 and F2M 1227+3214. We find that though F2M 0830+3759 is moderately obscured (NH,Z=2.1±0.2×1022 cm−2) and F2M 1227+3214 is mildly absorbed (NH,Z=3.4+0.8−0.7×1021 cm−2 …


The Impact Of The Dusty Torus On Obscured Quasar Halo Mass Measurements, M. A. Dipompeo, J. C. Runnoe, R. C. Hickox, A. D. Myers, J. E. Geach Feb 2016

The Impact Of The Dusty Torus On Obscured Quasar Halo Mass Measurements, M. A. Dipompeo, J. C. Runnoe, R. C. Hickox, A. D. Myers, J. E. Geach

Dartmouth Scholarship

Recent studies have found that obscured quasars cluster more strongly and are thus hosted by dark matter haloes of larger mass than their unobscured counterparts. These results pose a challenge for the simplest unification models, in which obscured objects are intrinsically the same as unobscured sources but seen through a dusty line of sight. There is general consensus that a structure like a "dusty torus" exists, meaning that this intrinsic similarity is likely the case for at least some subset of obscured quasars. However, the larger host halo masses of obscured quasars implies that there is a second obscured population …