Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Physical Sciences and Mathematics

Effect Of Magnetic Draping On Satellite Galaxies In Clusters, Vanessa Brown Jun 2024

Effect Of Magnetic Draping On Satellite Galaxies In Clusters, Vanessa Brown

Dissertations, Theses, and Capstone Projects

Galaxy evolution has been observed to be influenced by environment. Satellite galaxies orbiting within clusters can experience changes in morphology and composition through various mechanisms such as ram-pressure stripping (RPS), which removes a galaxy’s interstellar medium as it passes through the cluster via direct interaction with the hot intracluster medium gas. An open question is whether intracluster magnetic fields affect galaxy evolution, for example by forming a magnetic layer around infalling galaxies (called magnetic draping) and mitigating gas removal by RPS. Using the code GADGET-3, we compare global properties and mass distributions within identical cluster simulations run with and without …


Using Gaussian Processes To Measure M-Dwarf Rotation Periods From Ground-Based Light Curves, Ryan J. Lebron Jun 2024

Using Gaussian Processes To Measure M-Dwarf Rotation Periods From Ground-Based Light Curves, Ryan J. Lebron

Dissertations, Theses, and Capstone Projects

Stellar rotation is a readily observable characteristic that plays a crucial role in the generation and activity of magnetic fields through a process known as a magnetic dynamo. For low mass main sequence stars, they exhibit fully convective interiors, giving rise to a distinct dynamo mechanism compared to solar-type stars. Examining the rotational speeds of these stars can offer valuable insights into the workings of these mechanisms. To measure these rotation periods, we developed a pipeline to analyze 192 archival light curves of low mass stars observed by the Zwicky Transient Facility (ZTF) by utilizing a combination of Lomb-Scargle and …


Illustris-Tng Simulated Central Black Mass(Mbh) And Galaxy Properties Correlations With A Machine Learning Approach, Imani L. Dindy Jun 2024

Illustris-Tng Simulated Central Black Mass(Mbh) And Galaxy Properties Correlations With A Machine Learning Approach, Imani L. Dindy

Dissertations, Theses, and Capstone Projects

Observationaly it is well established that the masses of central black holes are tightly correlated with galaxy properties, most notably the bulge’s velocity dispersion. Cosmolog- ical hydrodynamical simulations can capture most of these correlations, but it is yet not understood why this occurs. To gain greater insight into central black hole growth we use machine learning algorithms to study the relationship between central black hole mass(MBH) and other galaxy properties at z=0 in the TNG simulations. We find that the central black hole mass can be accurately predicted with just a few galaxy properties only if the central black hole …


Rotation Period Distributions And Light Curve Morphologies Of Low Mass Stars And Young Associations, Mark Popinchalk Sep 2023

Rotation Period Distributions And Light Curve Morphologies Of Low Mass Stars And Young Associations, Mark Popinchalk

Dissertations, Theses, and Capstone Projects

This dissertation is centered around the rotation periods of low-mass stars and association of young stars. Rotation periods are a link to the age of the star, as they lose angular momentum over time. To understand how this angular momentum evolves requires understanding the rotation period distributions of a range of stellar types and ages. Traditionally, M dwarf stars and young stars were challenging to describe due to their intrinsic faintness and dispersed sky positions respectively. I approached this subject from several directions.


Naming Venus: An Exploration Of Goddesses, Heroines, And Famous Women, Kavya Beheraj Feb 2023

Naming Venus: An Exploration Of Goddesses, Heroines, And Famous Women, Kavya Beheraj

Dissertations, Theses, and Capstone Projects

Humans have been observing and romanticizing Venus for more than 5,000 years. However, mapping its surface has nearly always been impossible, since the planet is shrouded in thick clouds. A breakthrough came just fifty years ago with the invention of radar imaging, leading to the discovery (and naming) of hundreds of new features in a relatively short length of time.

The rapid naming of Venus is a case study on the impact of planetary nomenclature — the process of naming features on other worlds. While the act of naming streamlines communication and humanizes alien landscapes, it is subject to bias, …


Stacking The Gamma-Ray Sky To Search For Faint Astrophysical Populations, Yuzhe Song Sep 2022

Stacking The Gamma-Ray Sky To Search For Faint Astrophysical Populations, Yuzhe Song

Dissertations, Theses, and Capstone Projects

Gamma-ray emission can be generated from a wide variety of high-energy astrophysical phenomena, from stellar flares to pulsating neutron stars, and from interstellar clouds to the center of the Milky Way Galaxy. Entering the 13th year of its orbit around Earth, the Fermi Space Gamma-ray Telescope has been continually surveying the γ-ray sky with its Large Area Telescope (LAT) on board. The latest Fermi source catalog contains over 6000 sources. Yet, a lot of sources that are expected to emit γ-rays are not detected, and only small percentages of some populations are detected. For example, solar flares are detected in …


Astrophysics, Cosmology And Particle Phenomenology At The Energy Frontier, Jorge Fernandez Soriano Sep 2022

Astrophysics, Cosmology And Particle Phenomenology At The Energy Frontier, Jorge Fernandez Soriano

Dissertations, Theses, and Capstone Projects

This dissertation consists of two parts, treating significantly separated fields. Each part consists on several chapters, each treating a somewhat isolated topic from the rest. In each chapter, I present some of the work developed during my passage through the graduate program, which has mostly been published elsewhere.

Part I – Cosmic Rays and Particle Physics

  • Chapter 1: In this chapter we present an introduction to the topic of cosmic ray physics, with an special focus on the so-called ultra high energy cosmic rays: their potential origins, effects during their propagation between their sources and Earth, the different techniques used …


A Unified Approach To M Dwarf Ages, Rocio Kiman Sep 2021

A Unified Approach To M Dwarf Ages, Rocio Kiman

Dissertations, Theses, and Capstone Projects

Estimating ages of M dwarfs, the lowest mass stars in the Galaxy, is a current unresolved problem in Astrophysics. This dissertation focuses on developing a method to estimate ages for M dwarfs. This method consists of combining different age indicators in a Bayesian framework to achieve a precise age measurement. The age indicators I use are: 1) position in the color-magnitude diagram which is a proxy for effective temperature and luminosity, 2) movement of the stars in the Galaxy, or its 3D kinematics, 3) magnetic activity, measured by the Halpha emission line of the spectrum. In this dissertation I analyze …


An Accurate Solution Of The Self-Similar Orbit-Averaged Fokker-Planck Equation For Core-Collapsing Isotropic Globular Clusters: Properties And Application, Yuta Ito Sep 2020

An Accurate Solution Of The Self-Similar Orbit-Averaged Fokker-Planck Equation For Core-Collapsing Isotropic Globular Clusters: Properties And Application, Yuta Ito

Dissertations, Theses, and Capstone Projects

Hundreds of dense star clusters exist in almost all galaxies. Each cluster is composed of approximately ten thousand through ten million stars. The stars orbit in the clusters due to the clusters' self-gravity. Standard stellar dynamics expects that the clusters behave like collisionless self-gravitating systems on short time scales (~ million years) and the stars travel in smooth continuous orbits. Such clusters temporally settle to dynamically stable states or quasi-stationary states (QSS). Two fundamental QSS models are the isothermal- and polytropic- spheres since they have similar structures to the actual core (central part) and halo (outskirt) of the clusters. The …


Understanding Atmospheres Across The Stellar-Substellar Boundary, Eileen C. Gonzales Sep 2020

Understanding Atmospheres Across The Stellar-Substellar Boundary, Eileen C. Gonzales

Dissertations, Theses, and Capstone Projects

Complexities in the atmospheres of sources that straddle the boundary between low-mass stars and planets drive the spectral features we observe and the fundamental parameters that we derive. In an effort to understand the underlying cause of these spectral features, this work examines low-mass stars and brown dwarfs using two approaches: distance-calibrated spectral energy distributions (SEDs) and atmospheric retrievals. SEDs allow for the determination of semi-empirical fundamental parameters, while atmospheric retrievals allow us to derive the atmospheric structure and composition, as well as extrapolated fundamental parameters for a source. Low-metallicity and high surface gravity sources, known as subdwarfs, are the …


Differentiation In Impact Melt Sheets As A Mechanism To Produce Evolved Magmas On Mars, Ari Koeppel Jan 2018

Differentiation In Impact Melt Sheets As A Mechanism To Produce Evolved Magmas On Mars, Ari Koeppel

Dissertations and Theses

Asteroid bombardment contributed to extensive melting and resurfacing of ancient (> 3 Ga) Mars, thereby influencing the early evolution of the Martian crust. However, information about how impact melting has altered Mars’ crustal petrology is limited. Evidence from some of the largest impact structures on Earth, such as Sudbury and Manicouagan, suggests that some impact melt sheets experience chemical differentiation. If these processes occur on Mars, we expect to observe differentiated igneous materials in some exhumed rock samples. Some rocks observed in Gale crater are enriched in alkalis (up to 14 wt% Na2O + K2O) and …


Unseen Science: Modern Discoveries Too Far Away Or Tiny For Human Eyes, Lucy Huang Dec 2017

Unseen Science: Modern Discoveries Too Far Away Or Tiny For Human Eyes, Lucy Huang

Capstones

As science has progressed, scientists have realized that evidence goes beyond the realms of physical sight. Whether it is too small or difficult to find, scientists have developed different ways to get around this problem. We see this in cancer genomics and in extrasolar planetary research. Scientists use what they know and what they measure to validate their work.

https://lucy-huang-9tge.squarespace.com/


The Formation Of Fine-Grained Chondrule Rims In Unequilibrated Ordinary Chondrites, John Bigolski Sep 2017

The Formation Of Fine-Grained Chondrule Rims In Unequilibrated Ordinary Chondrites, John Bigolski

Dissertations, Theses, and Capstone Projects

Fine-grained rims are ubiquitous, non-igneous, features that completely or partially envelope the majority of chondrules within the least equilibrated of the unequilibrated ordinary chondrites (UOCs). A detailed examination of such rims in 4 UOC samples less than petrologic type 3.2 was conducted in order to 1) characterize the relative distribution of rims within chondrite samples, 2) inspect differences between fine-grained rims and adjacent matrix material, 3) petrologically analyze the rims and their relationships with chondrule cores, 4) characterize an ungrouped UOC, Northwest Africa 5717, 5) conduct a microanalytical investigation of rim / matrix boundaries to discern relative chronologies of fine-grained …


Characterizing Cool Brown Dwarfs And Low-Mass Companions With Low-Resolution Near-Infrared Spectra, Paige Godfrey Jun 2017

Characterizing Cool Brown Dwarfs And Low-Mass Companions With Low-Resolution Near-Infrared Spectra, Paige Godfrey

Dissertations, Theses, and Capstone Projects

Exoplanet direct detections are reaching the temperature regime of cool brown dwarfs, motivating further understanding of the coolest substellar atmospheres. These objects, T and Y dwarfs, are numerous and isolated in the field, thus making them easier to study in detail than objects in companion systems. Brown dwarf spectral types are derived from spectral morphology and generally appear to correspond with decreasing mass and effective temperature (Teff). However, spectral subclasses of the colder objects do not share this monotonic temperature correlation, indicating that secondary parameters (gravity, metallicity, dust) significantly influence spectral morphology. These secondary atmospheric parameters can provide …


Diffuse Gamma-Ray Emission From Nearby Molecular Clouds As A Probe Of Cosmic Ray Density Variations, Ryan Abrahams Feb 2017

Diffuse Gamma-Ray Emission From Nearby Molecular Clouds As A Probe Of Cosmic Ray Density Variations, Ryan Abrahams

Dissertations, Theses, and Capstone Projects

We analyze gamma-ray emission from nearby, interstellar molecular clouds in order to calibrate current tracers of the interstellar medium and to probe local cosmic ray gradients. Gamma-rays detected by the Fermi Gamma-ray Space Telescope are created when cosmic rays collide with atomic nuclei in the interstellar medium, and thus provide a unique, unbiased view of the distribution of gas. The gamma-ray flux per proton in the interstellar medium, also known as the gamma-ray emissivity, contains information about the density of high energy cosmic rays. These cosmic rays are born in supernovae shock waves and diffuse throughout the Galaxy. The cosmic …


Fundamental Parameters Of The Lowest Mass Stars To The Highest Mass Planets, Joseph C. Filippazzo Sep 2016

Fundamental Parameters Of The Lowest Mass Stars To The Highest Mass Planets, Joseph C. Filippazzo

Dissertations, Theses, and Capstone Projects

The physical and atmospheric properties of ultracool dwarfs are deeply entangled due to the degenerate effects of mass, age, metallicity, clouds and dust, activity, rotation, and possibly formation mechanism on their observed properties. Accurate fundamental parameters for a wide range of substellar objects are crucial to testing stellar and planetary formation theories. To determine these quantities, we construct flux-calibrated spectral energy distributions (SEDs) for 234 M, L, T, and Y dwarfs and calculate bolometric luminosity (Lbol), effective temperature (Teff), mass, surface gravity, radius, spectral indexes, synthetic photometry, and bolometric corrections (BCs) for each object. We use …


Comprehensive Mass Balance Isotope Schematics For Determining The Provenance Of The Moon Forming Impactor., John C. Wolbeck Sep 2016

Comprehensive Mass Balance Isotope Schematics For Determining The Provenance Of The Moon Forming Impactor., John C. Wolbeck

Dissertations, Theses, and Capstone Projects

The goal of this research was to identify areas where deviations from the canonic Moon forming impact scenario (an impactor approximately 12% of the mass of the Earth merging with 100% accretion efficiency with a proto-Earth each of which has a differentiated homologous anatomy of 30% iron and 70% silicates) may greatly reduce the efficacy of the impact mass balance analytics used to determine the provenance of the impactor based on isotope data from terrestrial and lunar samples and physical data from high resolution SPH computer simulations.

Modeling the giant Moon forming impact is complicated by a lack of knowledge …


The Evolution Of And Starburst-Agn Connection In Luminous And Ultraluminous Infrared Galaxies And Their Link To Globular Cluster Formation, Stephanie L. Fiorenza Jun 2014

The Evolution Of And Starburst-Agn Connection In Luminous And Ultraluminous Infrared Galaxies And Their Link To Globular Cluster Formation, Stephanie L. Fiorenza

Dissertations, Theses, and Capstone Projects

The evolutionary connection between nuclear starbursts and active galactic nuclei (AGN) in luminous infrared galaxies (LIRGs; 1011o

Using new spectrophotometric data, I classify the primary source of IR radiation as being a nuclear starburst or a type of AGN by using the Baldwin-Phillips-Terlevich (BPT) diagrams. I show that for the U/LIRGs in my sample the properties that describe their nuclear starbursts and AGN (e.g. star formation rate (SFR), L[O III], optical D parameter, D4000, and EW(Hδ)) are independent of one another, ensuring that no biases affect correlations between these properties and objects' locations on the BPT diagrams. I then derive …