Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Quantum Dot Band Gap Measurements, John Ryan Peterson Nov 2016

Quantum Dot Band Gap Measurements, John Ryan Peterson

Student Works

This presentation was given during the summer of 2016 as part of the BYU REU program funded by the NSF. Here I give a brief explanation of our quantum dot synthesis as well as explain the use of absorption spectroscopy to measure indirect band gap energies of semiconductors. Our experimental setup is shown and recent improvements are explained. We report indirect band gaps of quantum dots containing varying amounts of cobalt oxide and manganese oxide and synthesized in the protein ferritin. The data show that the band gap can be tuned arbitrarily in a certain range by varying the concentrations …


Direct Band Gap Measurements, John Ryan Peterson Nov 2016

Direct Band Gap Measurements, John Ryan Peterson

Student Works

This presentation was given during the summer of 2016 as part of the BYU REU program funded by the NSF. Here I give a brief explanation of our quantum dot synthesis and then explain the mechanism of photoluminsecence used to measure indirect band gap energies of semiconductors. Our experimental setup is shown. Direct band gaps of lead sulfide quantum dots synthesized in ferritin are reported. The data show that the band gap can be tuned arbitrarily in a certain range by varying the concentrations of the reactants. We compare stability of quantum dots in ferritin to quantum dots synthesized without …


High Altitude Cosmic Ray Detection, Jordan D. Van Nest Aug 2016

High Altitude Cosmic Ray Detection, Jordan D. Van Nest

2017 Academic High Altitude Conference

Cosmic rays are high energy atomic nuclei travelling near the speed of light that collide with atoms and molecules in Earth’s upper atmosphere (primarily with nitrogen and oxygen), breaking down into a shower of particles of various energies in the stratosphere. As they travel earthward, these particles continue to break down and lose energy which results in relatively little ionizing radiation reaching the surface. Due to the scattering of cosmic rays, the angle at which the rays enter the atmosphere can affect the number and energies of ionizing particles detected at various altitudes. When using a standard Geiger counter on …