Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Causal Discovery For Relational Domains: Representation, Reasoning, And Learning, Marc Maier Nov 2014

Causal Discovery For Relational Domains: Representation, Reasoning, And Learning, Marc Maier

Doctoral Dissertations

Many domains are currently experiencing the growing trend to record and analyze massive, observational data sets with increasing complexity. A commonly made claim is that these data sets hold potential to transform their corresponding domains by providing previously unknown or unexpected explanations and enabling informed decision-making. However, only knowledge of the underlying causal generative process, as opposed to knowledge of associational patterns, can support such tasks. Most methods for traditional causal discovery—the development of algorithms that learn causal structure from observational data—are restricted to representations that require limiting assumptions on the form of the data. Causal discovery has almost exclusively …


Computational Communication Intelligence: Exploring Linguistic Manifestation And Social Dynamics In Online Communication, Xiaoxi Xu Nov 2014

Computational Communication Intelligence: Exploring Linguistic Manifestation And Social Dynamics In Online Communication, Xiaoxi Xu

Doctoral Dissertations

We now live in an age of online communication. As social media becomes an integral part of our life, online communication becomes an essential life skill. In this dissertation, we aim to understand how people effectively communicate online. We research components of success in online communication and present scientific methods to study the skill of effective communication. This research advances the state of art in machine learning and communication studies. For communication studies, we pioneer the study of a communication phenomenon we call Communication Intelligence in online interactions. We create a theory about communication intelligence that measures participants’ ten high-order …


Retrieval Models Based On Linguistic Features Of Verbose Queries, Jae Hyun Park Nov 2014

Retrieval Models Based On Linguistic Features Of Verbose Queries, Jae Hyun Park

Doctoral Dissertations

Natural language expressions are more familiar to users than choosing keywords for queries. Given that, people can use natural language expressions to represent their sophisticated information needs. Instead of listing keywords, verbose queries are expressed in a grammatically well-formed phrase or sentence in which terms are used together to represent the more specific meanings of a concept, and the relationships of these concepts are expressed by function words. The goal of this thesis is to investigate methods of using the semantic and syntactic features of natural language queries to maximize the effectiveness of search. For this purpose, we propose the …


Adaptive Step-Sizes For Reinforcement Learning, William C. Dabney Nov 2014

Adaptive Step-Sizes For Reinforcement Learning, William C. Dabney

Doctoral Dissertations

The central theme motivating this dissertation is the desire to develop reinforcement learning algorithms that “just work” regardless of the domain in which they are applied. The largest impediment to this goal is the sensitivity of reinforcement learning algorithms to the step-size parameter used to rescale incremental updates. Adaptive step-size algorithms attempt to reduce this sensitivity or eliminate the step-size parameter entirely by automatically adjusting the step size throughout the learning process. Such algorithms provide an alternative to the standard “guess-and-check” methods used to find parameters known as parameter tuning. However, the problems with parameter tuning are currently masked by …


Scaling Mcmc Inference And Belief Propagation To Large, Dense Graphical Models, Sameer Singh Aug 2014

Scaling Mcmc Inference And Belief Propagation To Large, Dense Graphical Models, Sameer Singh

Doctoral Dissertations

With the physical constraints of semiconductor-based electronics becoming increasingly limiting in the past decade, single-core CPUs have given way to multi-core and distributed computing platforms. At the same time, access to large data collections is progressively becoming commonplace due to the lowering cost of storage and bandwidth. Traditional machine learning paradigms that have been designed to operate sequentially on single processor architectures seem destined to become obsolete in this world of multi-core, multi-node systems and massive data sets. Inference for graphical models is one such example for which most existing algorithms are sequential in nature and are difficult to scale …


Unsupervised Joint Alignment, Clustering And Feature Learning, Mohamed Marwan Mattar Aug 2014

Unsupervised Joint Alignment, Clustering And Feature Learning, Mohamed Marwan Mattar

Doctoral Dissertations

Joint alignment is the process of transforming instances in a data set to make them more similar based on a pre-defined measure of joint similarity. This process has great utility and applicability in many scientific disciplines including radiology, psychology, linguistics, vision, and biology. Most alignment algorithms suffer from two shortcomings. First, they typically fail when presented with complex data sets arising from multiple modalities such as a data set of normal and abnormal heart signals. Second, they require hand-picking appropriate feature representations for each data set, which may be time-consuming and ineffective, or outside the domain of expertise for practitioners. …


Incorporating Boltzmann Machine Priors For Semantic Labeling In Images And Videos, Andrew Kae Aug 2014

Incorporating Boltzmann Machine Priors For Semantic Labeling In Images And Videos, Andrew Kae

Doctoral Dissertations

Semantic labeling is the task of assigning category labels to regions in an image. For example, a scene may consist of regions corresponding to categories such as sky, water, and ground, or parts of a face such as eyes, nose, and mouth. Semantic labeling is an important mid-level vision task for grouping and organizing image regions into coherent parts. Labeling these regions allows us to better understand the scene itself as well as properties of the objects in the scene, such as their parts, location, and interaction within the scene. Typical approaches for this task include the conditional random field …


A Probabilistic Model Of Hierarchical Music Analysis, Phillip Benjamin Kirlin Apr 2014

A Probabilistic Model Of Hierarchical Music Analysis, Phillip Benjamin Kirlin

Doctoral Dissertations

Schenkerian music theory supposes that Western tonal compositions can be viewed as hierarchies of musical objects. The process of Schenkerian analysis reveals this hierarchy by identifying connections between notes or chords of a composition that illustrate both the small- and large-scale construction of the music. We present a new probabilistic model of this variety of music analysis, details of how the parameters of the model can be learned from a corpus, an algorithm for deriving the most probable analysis for a given piece of music, and both quantitative and human-based evaluations of the algorithm's performance. In addition, we describe the …


Multi-Sensor Mobile Robot Localization For Diverse Environments, Joydeep Biswas, Manuela M. Veloso Jan 2014

Multi-Sensor Mobile Robot Localization For Diverse Environments, Joydeep Biswas, Manuela M. Veloso

Computer Science Department Faculty Publication Series

Mobile robot localization with different sensors and algorithms is a widely studied problem, and there have been many approaches proposed, with considerable degrees of success. However, every sensor and algorithm has limitations, due to which we believe no single localization algorithm can be “perfect,” or universally applicable to all situations. Laser rangefinders are commonly used for localization, and state-of-theart algorithms are capable of achieving sub-centimeter accuracy in environments with features observable by laser rangefinders. Unfortunately, in large scale environments, there are bound to be areas devoid of features visible by a laser rangefinder, like open atria or corridors with glass …


Episodic Non-Markov Localization: Reasoning About Short-Term And Long-Term Features, Joydeep Biswas, Manuela M. Veloso Jan 2014

Episodic Non-Markov Localization: Reasoning About Short-Term And Long-Term Features, Joydeep Biswas, Manuela M. Veloso

Computer Science Department Faculty Publication Series

Markov localization and its variants are widely used for localization of mobile robots. These methods assume Markov independence of observations, implying that observations made by a robot correspond to a static map. However, in real human environments, observations include occlusions due to unmapped objects like chairs and tables, and dynamic objects like humans. We introduce an episodic non-Markov localization algorithm that maintains estimates of the belief over the trajectory of the robot while explicitly reasoning about observations and their correlations arising from unmapped static objects, moving objects, as well as objects from the static map. Observations are classified as arising …