Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, Sergey V. Drakunov, William Mackunis, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu Oct 2020

Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, Sergey V. Drakunov, William Mackunis, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu

Publications

A sliding mode observer is presented, which is rigorously proven to achieve finite-time state estimation of a dual-parallel underactuated (i.e., single-input multi-output) cart inverted pendulum system in the presence of parametric uncertainty. A salient feature of the proposed sliding mode observer design is that a rigorous analysis is provided, which proves finite-time estimation of the complete system state in the presence of input-multiplicative parametric uncertainty. The performance of the proposed observer design is demonstrated through numerical case studies using both sliding mode control (SMC)- and linear quadratic regulator (LQR)-based closed-loop control systems. The main contribution presented here is the rigorous …


Coverage Guided Differential Adversarial Testing Of Deep Learning Systems, Jianmin Guo, Houbing Song, Yue Zhao, Yu Jiang Jan 2020

Coverage Guided Differential Adversarial Testing Of Deep Learning Systems, Jianmin Guo, Houbing Song, Yue Zhao, Yu Jiang

Publications

Deep learning is increasingly applied to safety-critical application domains such as autonomous cars and medical devices. It is of significant importance to ensure their reliability and robustness. In this paper, we propose DLFuzz, the coverage guided differential adversarial testing framework to guide deep learing systems exposing incorrect behaviors. DLFuzz keeps minutely mutating the input to maximize the neuron coverage and the prediction difference between the original input and the mutated input, without manual labeling effort or cross-referencing oracles from other systems with the same functionality. We also design multiple novel strategies for neuron selection to improve the neuron coverage. The …


Automatic Gaze Classification For Aviators: Using Multi-Task Convolutional Networks As A Proxy For Flight Instructor Observation, Justin Wilson, Sandro Scielzo, Sukumaran Nair, Eric C. Larson Jan 2020

Automatic Gaze Classification For Aviators: Using Multi-Task Convolutional Networks As A Proxy For Flight Instructor Observation, Justin Wilson, Sandro Scielzo, Sukumaran Nair, Eric C. Larson

International Journal of Aviation, Aeronautics, and Aerospace

In this work, we investigate how flight instructors observe aviator scan patterns and assign quality to an aviator's gaze. We first establish the reliability of instructors to assign similar quality to an aviator's scan patterns, and then investigate methods to automate this quality using machine learning. In particular, we focus on the classification of gaze for aviators in a mixed-reality flight simulation. We create and evaluate two machine learning models for classifying gaze quality of aviators: a task-agnostic model and a multi-task model. Both models use deep convolutional neural networks to classify the quality of pilot gaze patterns for 40 …