Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Aquaculture and Fisheries

OES Faculty Publications

Submerged aquatic vegetation

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Temporal Stability Of Seagrass Extent, Leaf Area, And Carbon Storage In St. Joseph Bay, Florida: A Semi-Automated Remote Sensing Analysis, Marie Cindy Lebrasse, Blake A. Schaeffer, Megan M. Coffer, Peter J. Whitman, Richard C. Zimmerman, Victoria J. Hill, Kazi A. Islam, Jiang Li, Christopher L. Osburn Jan 2022

Temporal Stability Of Seagrass Extent, Leaf Area, And Carbon Storage In St. Joseph Bay, Florida: A Semi-Automated Remote Sensing Analysis, Marie Cindy Lebrasse, Blake A. Schaeffer, Megan M. Coffer, Peter J. Whitman, Richard C. Zimmerman, Victoria J. Hill, Kazi A. Islam, Jiang Li, Christopher L. Osburn

OES Faculty Publications

Seagrasses are globally recognized for their contribution to blue carbon sequestration. However, accurate quantification of their carbon storage capacity remains uncertain due, in part, to an incomplete inventory of global seagrass extent and assessment of its temporal variability. Furthermore, seagrasses are undergoing significant decline globally, which highlights the urgent need to develop change detection techniques applicable to both the scale of loss and the spatial complexity of coastal environments. This study applied a deep learning algorithm to a 30-year time series of Landsat 5 through 8 imagery to quantify seagrass extent, leaf area index (LAI), and belowground organic carbon (BGC) …


Fish Species Distribution In Seagrass Habitats Of Chesapeake Bay Are Structured By Abiotic And Biotic Factors, Jason J. Schaffler, Jacques Van Montfrans, Cynthia M. Jones, Robert J. Orth Jul 2013

Fish Species Distribution In Seagrass Habitats Of Chesapeake Bay Are Structured By Abiotic And Biotic Factors, Jason J. Schaffler, Jacques Van Montfrans, Cynthia M. Jones, Robert J. Orth

OES Faculty Publications

Seagrass habitats have long been known to serve as nursery habitats for juvenile fish by providing refuges from predation and areas of high forage abundance. However, comparatively less is known about other factors structuring fish communities that make extensive use of seagrass as nursery habitat. We examined both physical and biological factors that may structure the juvenile seagrass-associated fish communities across a synoptic-scale multiyear study in lower Chesapeake Bay. Across 3years of sampling, we collected 21,153 fish from 31 species. Silver Perch Bairdiella chrysoura made up over 86% of all individuals collected. Nine additional species made up at least 1% …