Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Radial Basis Function Differential Quadrature Method For The Numerical Solution Of Partial Differential Equations, Daniel Watson Dec 2017

Radial Basis Function Differential Quadrature Method For The Numerical Solution Of Partial Differential Equations, Daniel Watson

Dissertations

In the numerical solution of partial differential equations (PDEs), there is a need for solving large scale problems. The Radial Basis Function Differential Quadrature (RBFDQ) method and local RBF-DQ method are applied for the solutions of boundary value problems in annular domains governed by the Poisson equation, inhomogeneous biharmonic equation, and the inhomogeneous Cauchy-Navier equations of elasticity. By choosing the collocation points properly, linear systems can be obtained so that the coefficient matrices have block circulant structures. The resulting systems can be efficiently solved using matrix decomposition algorithms (MDAs) and fast Fourier transforms (FFTs). For the local RBFDQ method, the …


A Stable Algorithm For Divergence-Free And Curl-Free Radial Basis Functions In The Flat Limit, Kathryn Primrose Drake Aug 2017

A Stable Algorithm For Divergence-Free And Curl-Free Radial Basis Functions In The Flat Limit, Kathryn Primrose Drake

Boise State University Theses and Dissertations

Radial basis functions (RBFs) were originally developed in the 1970s for interpolating scattered topographic data. Since then they have become increasingly popular for other applications involving the approximation of scattered, scalar-valued data in two and higher dimensions, especially data collected on the surface of a sphere. In the late 2000s, matrix-valued RBFs were introduced for approximating divergence-free and curl-free vector fields on the surface of a sphere from scattered samples, which arise naturally in atmospheric and oceanic sciences. The intriguing property of these RBFs is that the resulting vector-valued approximations analytically preserve the divergence-free or curl-free properties of the field. …


Numerical Solution Of Fractional Elliptic Pde's By The Collocation Method, Fuat Usta Jun 2017

Numerical Solution Of Fractional Elliptic Pde's By The Collocation Method, Fuat Usta

Applications and Applied Mathematics: An International Journal (AAM)

In this presentation a numerical solution for the solution of fractional order of elliptic partial differential equation in R2 is proposed. In this method we use the Radial basis functions (RBFs) method to benefit the desired properties of mesh free techniques such as no need to generate any mesh and easily applied to multi dimensions. In the numerical solution approach the RBF collocation method is used to discrete fractional derivative terms with the Gaussian basis function. Two dimensional numerical examples are presented and discussed, which conform well with the corresponding exact solutions.


An Rbf Interpolation Blending Scheme For Effective Shock-Capturing, M. Harris, Eduardo Divo, Alain J. Kassab Apr 2017

An Rbf Interpolation Blending Scheme For Effective Shock-Capturing, M. Harris, Eduardo Divo, Alain J. Kassab

Publications

In recent years significant focus has been given to the study of Radial basis functions (RBF), especially in their use on solving partial differential equations (PDE). RBF have an impressive capability of inter- polating scattered data, even when this data presents localized discontinuities. However, for infinitely smooth RBF such as the Multiquadrics, inverse Multiquadrics, and Gaussian, the shape parameter must be chosen properly to obtain accurate approximations while avoiding ill-conditioning of the interpolating matrices. The optimum shape parameter can vary significantly depending on the field, particularly in locations of steep gradients, shocks, or discontinuities. Typically, the shape parameter is chosen …