Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Mathematical Modeling For Dental Decay Prevention In Children And Adolescents, Mahdiyeh Soltaninejad Apr 2024

Mathematical Modeling For Dental Decay Prevention In Children And Adolescents, Mahdiyeh Soltaninejad

Dissertations

The high prevalence of dental caries among children and adolescents, especially those from lower socio-economic backgrounds, is a significant nationwide health concern. Early prevention, such as dental sealants and fluoride varnish (FV), is essential, but access to this care remains limited and disparate. In this research, a national dataset is utilized to assess sealants' reach and effectiveness in preventing tooth decay, particularly focusing on 2nd molars that emerge during early adolescence, a current gap in the knowledge base. FV is recommended to be delivered during medical well-child visits to children who are not seeing a dentist. Challenges and facilitators in …


Mathematical Modeling And Analysis Of Inflammation And Tissue Repair: Lung Inflammation And Wound Healing In Corals Under Stress, Quintessa Hay Jan 2024

Mathematical Modeling And Analysis Of Inflammation And Tissue Repair: Lung Inflammation And Wound Healing In Corals Under Stress, Quintessa Hay

Theses and Dissertations

A variety of insults, including tissue injury and/or exposure to pathogen, elicit an immune response in many organisms. An improperly regulated immune response can result in deleterious effects to the organism. Here we present models for lung injury in young and old mice and models for wound healing in coral reefs.

It is well known that the immune response becomes less effective in older individuals. This is of particular interest in pulmonary insults such as ventilator induced lung injury (VILI) or lung infection. We extended a mathematical model for the inflammatory response to VILI and used experimental data to select …


Mathematical Models In Medicine: The Immune Response Of Celiac Disease And The Environmental Transmission Of Clostridioides Difficile In Healthcare Settings, Cara Jill Sulyok May 2021

Mathematical Models In Medicine: The Immune Response Of Celiac Disease And The Environmental Transmission Of Clostridioides Difficile In Healthcare Settings, Cara Jill Sulyok

Doctoral Dissertations

Mathematical modeling is a useful technique to describe dynamics happening within events and allows one to address questions and test hypotheses that may be not be feasible to study in reality. This work uses mathematical models to describe two such phenomena, one relating to immunology and the other to the spread of infectious diseases.

Celiac disease is a hereditary autoimmune disease that affects approximately 1 in 133 Americans. It is caused by a reaction to the protein gluten found in wheat, rye, and barley. After ingesting gluten, a patient with celiac disease may experience a range of unpleasant symptoms while …


Mathematical Models Of Mosquito Populations, Hanna Reed Jan 2018

Mathematical Models Of Mosquito Populations, Hanna Reed

Honors Undergraduate Theses

The intent of this thesis is to develop ordinary differential equation models to better understand the mosquito population. We first develop a framework model, where we determine the condition under which a natural mosquito population can persist in the environment. Wolbachia is a bacterium which limits the replication of viruses inside the mosquito which it infects. As a result, infecting a mosquito population with Wolbachia can decrease the transmission of viral mosquito-borne diseases, such as dengue. We develop another ODE model to investigate the invasion of Wolbachia in a mosquito population. In a biologically feasible situation, we determine three coexisting …


Mathematical Models Of The Inflammatory Response In The Lungs, Sarah B. Minucci Jan 2017

Mathematical Models Of The Inflammatory Response In The Lungs, Sarah B. Minucci

Theses and Dissertations

Inflammation in the lungs can occur for many reasons, from bacterial infections to stretch by mechanical ventilation. In this work we compare and contrast various mathematical models for lung injuries in the categories of acute infection, latent versus active infection, and particulate inhalation. We focus on systems of ordinary differential equations (ODEs), agent-based models (ABMs), and Boolean networks. Each type of model provides different insight into the immune response to damage in the lungs. This knowledge includes a better understanding of the complex dynamics of immune cells, proteins, and cytokines, recommendations for treatment with antibiotics, and a foundation for more …


Latin Hypercube Sampling And Partial Rank Correlation Coefficient Analysis Applied To An Optimal Control Problem, Boloye Gomero Aug 2012

Latin Hypercube Sampling And Partial Rank Correlation Coefficient Analysis Applied To An Optimal Control Problem, Boloye Gomero

Masters Theses

Latin Hypercube Sampling/Partial Rank Correlation Coefficient (LHS/PRCC) sensitivity analysis is an efficient tool often employed in uncertainty analysis to explore the entire parameter space of a model. Despite the usefulness of LHS/PRCC sensitivity analysis in studying the sensitivity of a model to the parameter values used in the model, no study has been done that fully integrates Latin Hypercube sampling with optimal control analysis.

In this thesis, we couple the optimal control numerical procedure to the LHS/PRCC procedure and perform a simultaneous examination of the effects of all the LHS parameter on the objective functional value. To test the effectiveness …


Three Methods For Solving The Low Energy Neutron Boltzmann Equation, Tony Charles Slaba Apr 2007

Three Methods For Solving The Low Energy Neutron Boltzmann Equation, Tony Charles Slaba

Mathematics & Statistics Theses & Dissertations

The solution to the neutron Boltzmann equation is separated into a straightahead component dominating at high energies and an isotropic component dominating at low energies. The high-energy solution is calculated using HZETRN-05, and the low-energy isotropic component is modeled by two non-coupled integro-differential equations describing both forward and backward neutron propagation. Three different solution methods are then used to solve the equations. The collocation method employs linear I3-splines to transform each equation into a system of ODES; the resulting system is then solved exactly and evaluated using numerical integration techniques. Wilson's method uses a perturbational approach in which a fundamental …


A Generalization Of Linear Multistep Methods, Leon Arriola Jan 1990

A Generalization Of Linear Multistep Methods, Leon Arriola

Mathematics & Statistics Theses & Dissertations

A generalization of the methods that are currently available to solve systems of ordinary differential equations is made. This generalization is made by constructing linear multistep methods from an arbitrary set of monotone interpolating and approximating functions. Local truncation error estimates as well as stability analysis is given. Specifically, the class of linear multistep methods of the Adams and BDF type are discussed.