Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Kinetic Simulations Of Active Nematic Polymers In Channel Flow, Lacey Savoie Schenk Dec 2022

Kinetic Simulations Of Active Nematic Polymers In Channel Flow, Lacey Savoie Schenk

Mathematics & Statistics Theses & Dissertations

Suspensions of active nematic liquid crystalline polymers exhibit complex phenomena such as spontaneous flows, pattern formations, and defects. They have many applications in industry, commercial settings, and our daily lives. We employ the Kinetic Model for our research, an extensive model that couples the Smoluchowski Equation and the incompressible Navier-Stokes Equations to solve for the active nanorod number density function–a function dependent on the polymer’s physical orientation and space at a given time. Using this function, we can derive the polymer’s polarity and nematic orientations as well as other rheological properties. In this research, we conduct numerical simulations of active, …


Statistical Methods For Meta-Analysis In Large-Scale Genomic Experiments, Wimarsha Thathsarani Jayanetti Dec 2022

Statistical Methods For Meta-Analysis In Large-Scale Genomic Experiments, Wimarsha Thathsarani Jayanetti

Mathematics & Statistics Theses & Dissertations

Recent developments in high throughput genomic assays have opened up the possibility of testing hundreds and thousands of genes simultaneously. With the availability of vast amounts of public databases, researchers tend to combine genomic analysis results from multiple studies in the form of a meta-analysis. Meta-analysis methods can be broadly classified into two main categories. The first approach is to combine the statistical significance (pvalues) of the genes from each individual study, and the second approach is to combine the statistical estimates (effect sizes) from the individual studies. In this dissertation, we will discuss how adherence to the standard null …


Inexact Fixed-Point Proximity Algorithms For Nonsmooth Convex Optimization, Jin Ren Aug 2022

Inexact Fixed-Point Proximity Algorithms For Nonsmooth Convex Optimization, Jin Ren

Mathematics & Statistics Theses & Dissertations

The aim of this dissertation is to develop efficient inexact fixed-point proximity algorithms with convergence guaranteed for nonsmooth convex optimization problems encountered in data science. Nonsmooth convex optimization is one of the core methodologies in data science to acquire knowledge from real-world data and has wide applications in various fields, including signal/image processing, machine learning and distributed computing. In particular, in the context of image reconstruction, compressed sensing and sparse machine learning, either the objective functions or the constraints of the modeling optimization problems are nondifferentiable. Hence, traditional methods such as the gradient descent method and the Newton method are …


A Direct Method For Modeling And Simulations Of Elliptic And Parabolic Interface Problems, Kumudu Janani Gamage May 2022

A Direct Method For Modeling And Simulations Of Elliptic And Parabolic Interface Problems, Kumudu Janani Gamage

Mathematics & Statistics Theses & Dissertations

Interface problems have many applications in physics. In this dissertation, we develop a direct method for solving three-dimensional elliptic interface problems and study their application in solving parabolic interface problems. As many of the physical applications of interface problems can be approximated with partial differential equations (PDE) with piecewise constant coefficients, our derivation of the model is focused on interface problems with piecewise constant coefficients but have a finite jump across the interface. The critical characteristic of the method is that our computational framework is based on a finite difference scheme on a uniform Cartesian grid system and does not …