Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 130

Full-Text Articles in Physical Sciences and Mathematics

Adaptation Reshapes The Distribution Of Fitness Effects, Diego Tenoch Morales Lopez Dec 2023

Adaptation Reshapes The Distribution Of Fitness Effects, Diego Tenoch Morales Lopez

Electronic Thesis and Dissertation Repository

The process of adaptation has been of interest since the XIX century, when Darwin first proposed the idea of natural selection. Since then, there has been a myriad of theoretical and empirical works that have expanded the field. From the many evolutionary insights these works have produced, a foundational idea is that spontaneous mutations in the genome of organisms can produce changes to their reproductive success that might confer an advantage for the mutant organisms with respect to their peers. Therefore, mutations drive adaptive evolution by virtue of their heritable effects on fitness. Empirical measures of the distribution of these …


Population Dynamics And Bifurcations In Predator-Prey Systems With Allee Effect, Yanni Zeng Dec 2023

Population Dynamics And Bifurcations In Predator-Prey Systems With Allee Effect, Yanni Zeng

Electronic Thesis and Dissertation Repository

This thesis investigates a series of nonlinear predator-prey systems incorporating the Allee effect using differential equations. The main goal is to determine how the Allee effect affects population dynamics. The stability and bifurcations of the systems are studied with a hierarchical parametric analysis, providing insights into the behavioral changes of the population within the systems. In particular, we focus on the study of the number and distribution of limit cycles (oscillating solutions) and the existence of multiple stable states, which cause complex dynamical behaviors. Moreover, including the prey refuge, we examine how our method benefits the low-density animals and affects …


High-Performance Computing In Covariant Loop Quantum Gravity, Pietropaolo Frisoni Dec 2023

High-Performance Computing In Covariant Loop Quantum Gravity, Pietropaolo Frisoni

Electronic Thesis and Dissertation Repository

This Ph.D. thesis presents a compilation of the scientific papers I published over the last three years during my Ph.D. in loop quantum gravity (LQG). First, we comprehensively introduce spinfoam calculations with a practical pedagogical paper. We highlight LQG's unique features and mathematical formalism and emphasize the computational complexities associated with its calculations. The subsequent articles delve into specific aspects of employing high-performance computing (HPC) in LQG research. We discuss the results obtained by applying numerical methods to studying spinfoams' infrared divergences, or ``bubbles''. This research direction is crucial to define the continuum limit of LQG properly. We investigate the …


Series Expansions Of Lambert W And Related Functions, Jacob Imre Nov 2023

Series Expansions Of Lambert W And Related Functions, Jacob Imre

Electronic Thesis and Dissertation Repository

In the realm of multivalued functions, certain specimens run the risk of being elementary or complex

to a fault. The Lambert $W$ function serves as a middle ground in a way, being non-representable by elementary

functions yet admitting several properties which have allowed for copious research. $W$ utilizes the

inverse of the elementary function $xe^x$, resulting in a multivalued function with non-elementary

connections between its branches. $W_k(z)$, the solution to the equation $z=W_k(z)e^{W_k(z)}$

for a "branch number" $k \in \Z$, has both asymptotic and Taylor series for its various branches.

In recent years, significant effort has been dedicated to exploring …


Study Of Behaviour Change And Impact On Infectious Disease Dynamics By Mathematical Models, Tianyu Cheng Oct 2023

Study Of Behaviour Change And Impact On Infectious Disease Dynamics By Mathematical Models, Tianyu Cheng

Electronic Thesis and Dissertation Repository

This thesis uses mathematical models to study human behaviour changes' effects on infectious disease transmission dynamics. It centers on two main topics. The first concerns how behaviour response evolves during epidemics and the effects of adaptive precaution behaviour on epidemics. The second topic is how to build general framework models incorporating human behaviour response in epidemiological modelling.

In the first project, based on the fact that a fraction of the epidemiologically susceptible population is actually susceptible due to precautions, we present a novel perspective on understanding the infection force, incorporating human protection behaviours. This view explains many existing infection force …


Data-Driven Exploration Of Coarse-Grained Equations: Harnessing Machine Learning, Elham Kianiharchegani Aug 2023

Data-Driven Exploration Of Coarse-Grained Equations: Harnessing Machine Learning, Elham Kianiharchegani

Electronic Thesis and Dissertation Repository

In scientific research, understanding and modeling physical systems often involves working with complex equations called Partial Differential Equations (PDEs). These equations are essential for describing the relationships between variables and their derivatives, allowing us to analyze a wide range of phenomena, from fluid dynamics to quantum mechanics. Traditionally, the discovery of PDEs relied on mathematical derivations and expert knowledge. However, the advent of data-driven approaches and machine learning (ML) techniques has transformed this process. By harnessing ML techniques and data analysis methods, data-driven approaches have revolutionized the task of uncovering complex equations that describe physical systems. The primary goal in …


Complex-Valued Approach To Kuramoto-Like Oscillators, Jacqueline Bao Ngoc Doan May 2023

Complex-Valued Approach To Kuramoto-Like Oscillators, Jacqueline Bao Ngoc Doan

Electronic Thesis and Dissertation Repository

The Kuramoto Model (KM) is a nonlinear model widely used to model synchrony in a network of oscillators – from the synchrony of the flashing fireflies to the hand clapping in an auditorium. Recently, a modification of the KM (complex-valued KM) was introduced with an analytical solution expressed in terms of a matrix exponential, and consequentially, its eigensystem. Remarkably, the analytical KM and the original KM bear significant similarities, even with phase lag introduced, despite being determined by distinct systems. We found that this approach gives a geometric perspective of synchronization phenomena in terms of complex eigenmodes, which in turn …


The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi Apr 2023

The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi

Electronic Thesis and Dissertation Repository

Recent observations of protostellar cores reveal complex magnetic field configurations that are distorted in the innermost disk region. Unlike the prestellar phase, where the magnetic field geometry is simpler with an hourglass configuration, magnetic fields in the protostellar phase are sculpted by the formation of outflows and rapid rotation. This gives rise to a significant azimuthal (or toroidal) component that has not yet been analytically modelled in the literature. Moreover, the onset of outflows, which act as angular momentum transport mechanisms, have received considerable attention in the past few decades. Two mechanisms: 1) the driving by the gradient of a …


Control Of Shear Layers Using Heating Patterns, Shoyon Panday Apr 2023

Control Of Shear Layers Using Heating Patterns, Shoyon Panday

Electronic Thesis and Dissertation Repository

The presence of spatially modulated flows is universal in nature. Distributed heating and surface roughness are the most common elements to cause non-uniformity in the flows. Spatially distributed heating leads to fundamentally distinct convection, different from the classical Rayleigh-Bénard instability. Interestingly, the onset of convective motion due to horizontal temperature gradients requires no critical conditions – a forced response. At the same time, surface roughness is known to significantly influence flow behaviours and heat transfer characteristics. The current work aims to analyze modulated flows and assess their potential as a mixing technique for low Reynolds number flows. Spanwise modulations (perpendicular …


Pillars Of Biology: 'The Genetical Evolution Of Social Behaviour, I And Ii'., Geoff Wild Jan 2023

Pillars Of Biology: 'The Genetical Evolution Of Social Behaviour, I And Ii'., Geoff Wild

Applied Mathematics Publications

None.


Spike-Time Neural Codes And Their Implication For Memory, Alexandra Busch Jan 2023

Spike-Time Neural Codes And Their Implication For Memory, Alexandra Busch

Electronic Thesis and Dissertation Repository

The possibility of temporal coding in neural data through patterns of precise spike times has long been of interest in neuroscience. Recent and rapid advancements in experimental neuroscience make it not only possible, but also routine, to record the spikes of hundreds to thousands of cells simultaneously. These increasingly common large-scale data sets provide new opportunities to discover temporally precise and behaviourally relevant patterns of spiking activity across large populations of cells. At the same time, the exponential growth in size and complexity of new data sets presents its own methodological challenges. Specifically, it remains unclear how best to (1) …


Pythagorean Vectors And Rational Orthonormal Matrices, Aishat Olagunju Jan 2023

Pythagorean Vectors And Rational Orthonormal Matrices, Aishat Olagunju

Electronic Thesis and Dissertation Repository

A Pythagorean vector is an integer vector having an integer 2-norm. Such vectors are closely related to Pythagorean n-tuples, since n-tuples are the building blocks for Pythagorean vectors. Pythagorean vectors are, in their turn, the building blocks for rational orthonormal matrices. The work in this thesis has a pedagogical application to the QR decomposition of matrices, widely used in Linear Algebra. A barrier for students learning the details of the QR decomposition of a given matrix A is the occurrence of square-roots that cannot be simplified during the application of the two standard algorithms, namely the Gram--Schmidt method and Householder …


On The Spatial Modelling Of Biological Invasions, Tedi Ramaj Dec 2022

On The Spatial Modelling Of Biological Invasions, Tedi Ramaj

Electronic Thesis and Dissertation Repository

We investigate problems of biological spatial invasion through the use of spatial modelling. We begin by examining the spread of an invasive weed plant species through a forest by developing a system of partial differential equations (PDEs) involving an invasive weed and a competing native plant species. We find that extinction of the native plant species may be achieved by increasing the carrying capacity of the forest as well as the competition coefficient between the species. We also find that the boundary conditions exert long-term control on the biomass of the invasive weed and hence should be considered when implementing …


Portfolio Optimization Analysis In The Family Of 4/2 Stochastic Volatility Models, Yuyang Cheng Nov 2022

Portfolio Optimization Analysis In The Family Of 4/2 Stochastic Volatility Models, Yuyang Cheng

Electronic Thesis and Dissertation Repository

Over the last two decades, trading of financial derivatives has increased significantly along with richer and more complex behaviour/traits on the underlying assets. The need for more advanced models to capture traits and behaviour of risky assets is crucial. In this spirit, the state-of-the-art 4/2 stochastic volatility model was recently proposed by Grasselli in 2017 and has gained great attention ever since. The 4/2 model is a superposition of a Heston (1/2) component and a 3/2 component, which is shown to be able to eliminate the limitations of these two individual models, bringing the best out of each other. Based …


Solving Partial Differential Equations Using The Finite Difference Method And The Fourier Spectral Method, Jenna Siobhan Parkinson Aug 2022

Solving Partial Differential Equations Using The Finite Difference Method And The Fourier Spectral Method, Jenna Siobhan Parkinson

Undergraduate Student Research Internships Conference

This paper discusses the finite difference method and the Fourier spectral method for solving partial differential equations.


Lecture Note On Delay Differential Equation, Wenfeng Liu Aug 2022

Lecture Note On Delay Differential Equation, Wenfeng Liu

Undergraduate Student Research Internships Conference

Delay differential equation is an important field in applied mathematics since it concerns more situations than the ordinary differential equation. Moreover, it makes the equations more applicable to the object's movement in real life.

My project is the lecture note on the delay differential equation provides a basic introduction to the delay differential equation, its application in real life, improving the ordinary differential equation, the primary method and definition for solving the delay differential equation and the use of the way in the ordinary differential equation to estimate the periodic solution to the delay differential equation.


Simulating And Modelling Adaptive Walks With The Nk Model, Abigail K. Kushnir Aug 2022

Simulating And Modelling Adaptive Walks With The Nk Model, Abigail K. Kushnir

Undergraduate Student Research Internships Conference

This presentation outlines results obtained by simulating adaptive walks using the NK model. We were interested in how the mutation bias affects the distribution of fitness effects and how we could use our results to form theoretical equations to model the behaviour of a walk. Necessary biological background is also described.


A Kuramoto Model Approach To Predicting Chaotic Systems With Echo State Networks, Sophie Wu, Jackson Howe Aug 2022

A Kuramoto Model Approach To Predicting Chaotic Systems With Echo State Networks, Sophie Wu, Jackson Howe

Undergraduate Student Research Internships Conference

An Echo State Network (ESN) with an activation function based on the Kuramoto model (Kuramoto ESN) is implemented, which can successfully predict the logistic map for a non-trivial number of time steps. The reservoir in the prediction stage exhibits binary dynamics when a good prediction is made, but the oscillators in the reservoir display a larger variability in states as the ESN’s prediction becomes worse. Analytical approaches to quantify how the Kuramoto ESN’s dynamics relate to its prediction are explored, as well as how the dynamics of the Kuramoto ESN relate to another widely studied physical model, the Ising model.


Travelling Wave Solutions On A Cylindrical Geometry, Karnav R. Raval Aug 2022

Travelling Wave Solutions On A Cylindrical Geometry, Karnav R. Raval

Undergraduate Student Research Internships Conference

Fluid equations are generally quite difficult and computationally-expensive to solve. However, if one is primarily interested in how the surface of the fluid deforms, we can re-formulate the governing equations purely in terms of free surface variables. Reformulating equations in such a way drastically cuts down on computational cost, and may be useful in areas such as modelling blood flow. Here, we study one such free-boundary formulation on a cylindrical geometry.


A Molecular Dynamics Study Of Polymer Chains In Shear Flows And Nanocomposites, Venkat Bala May 2022

A Molecular Dynamics Study Of Polymer Chains In Shear Flows And Nanocomposites, Venkat Bala

Electronic Thesis and Dissertation Repository

In this work we study single chain polymers in shear flows and nanocomposite polymer melts extensively through the use of large scale molecular dynamics simulations through LAMMPS. In the single polymer chain shear flow study, we use the Lattice Boltzmann method to simulate fluid dynamics and also include thermal noise as per the \emph{fluctuation-dissipation} theorem in the system. When simulating the nanocomposite polymer melts, we simply use a Langevin thermostat to mimic a heat bath. In the single polymer in shear flow study we investigated the margination of a single chain towards solid surfaces and how strongly the shear flow …


Algorithms For Regular Chains Of Dimension One, Juan P. Gonzalez Trochez Apr 2022

Algorithms For Regular Chains Of Dimension One, Juan P. Gonzalez Trochez

Electronic Thesis and Dissertation Repository

One of the core commands in the RegularChains library inside Maple is Triangularize. The underlying decomposes the solution set of a polynomial system into geometrically meaningful components represented by regular chains. This algorithm works by repeatedly calling a procedure, called Intersect, which computes the common zeros of a polynomial p and a regular chain T .

As the number of variables of p and T , as well as their degrees, increase, the call to the function Intersect(p, T ) becomes more and more computationally expensive. It was observed in that when the input polynomial system is zero-dimensional and T …


Statistical Applications To The Management Of Intensive Care And Step-Down Units, Yawo Mamoua Kobara Apr 2022

Statistical Applications To The Management Of Intensive Care And Step-Down Units, Yawo Mamoua Kobara

Electronic Thesis and Dissertation Repository

This thesis proposes three contributing manuscripts related to patient flow management, server decision-making, and ventilation time in the intensive care and step-down units system.

First, a Markov decision process (MDP) model with a Monte Carlo simulation was performed to compare two patient flow policies: prioritizing premature step-down and prioritizing rejection of patients when the intensive care unit is congested. The optimal decisions were obtained under the two strategies. The simulation results based on these optimal decisions show that a premature step-down strategy contributes to higher congestion downstream. Counter-intuitively, premature step-down should be discouraged, and patient rejection or divergence actions should …


Non-Circular Hydraulic Jumps Due To Inclined Jets, Ahmed Mohamed Abdelaziz Oct 2021

Non-Circular Hydraulic Jumps Due To Inclined Jets, Ahmed Mohamed Abdelaziz

Electronic Thesis and Dissertation Repository

When a laminar inclined circular jet impinges on a horizontal surface, it forms a non-circular hydraulic jump governed by a non-axisymmetric flow. In this thesis, we use the boundary-layer and thin-film approaches in the three dimensions to theoretically analyse such flow and the hydraulic jumps produced in such cases. We particularly explore the interplay among inertia, gravity, and the effective inclination angle on the non-axisymmetric flow.

The boundary-layer height is found to show an azimuthal dependence at strong gravity level only; however, the thin film thickness as well as the hydraulic jump profile showed a strong non-axisymmetric behaviour at all …


Coevolution Of Hosts And Pathogens In The Presence Of Multiple Types Of Hosts, Evan J. Mitchell Aug 2021

Coevolution Of Hosts And Pathogens In The Presence Of Multiple Types Of Hosts, Evan J. Mitchell

Electronic Thesis and Dissertation Repository

How will hosts and pathogens coevolve in response to multiple types of hosts? I study this question from three different perspectives. First, I model a scenario in which hosts are categorized as female or male. Hosts invest resources in maintaining their immune system at a cost to their reproductive success, while pathogens face a trade-off between transmission and duration of infection. Importantly, female hosts are also able to vertically transmit an infection to their newborn offspring. The main result is that as the rate of vertical transmission increases, female hosts will have a greater incentive to pay the cost to …


Development Of A Low Field Mri-Based Approach For Observation Of Water Penetration Into Clay: Preliminary Results, Shivam Gupta Aug 2021

Development Of A Low Field Mri-Based Approach For Observation Of Water Penetration Into Clay: Preliminary Results, Shivam Gupta

Undergraduate Student Research Internships Conference

Magnetic resonance imaging (MRI) are considered one of the most efficient and non-invasive methods of observing water content in permeable substances. MRI can visualize and quantify the movement of water in real time. In this study, MRI was used to observe the water penetration through clay. Furthermore, MRI can acquire three-dimensional data due to its radio-frequency signals from any orientation. The contrast of the images produced by MRI is a display of the fluid concentration. As such, any change in the contrast intensity is interpreted as a regional change in the concentration of fluid. This report summarizes the preliminary results …


Symphas: A Modular Api For Phase-Field Modeling Using Compile-Time Symbolic Algebra, Steven A. Silber Aug 2021

Symphas: A Modular Api For Phase-Field Modeling Using Compile-Time Symbolic Algebra, Steven A. Silber

Electronic Thesis and Dissertation Repository

The phase-field method is a common approach to qualitative analysis of phase transitions. It allows visualizing the time evolution of a phase transition, providing valuable insight into the underlying microstructure and the dynamical processes that take place. Although the approach is applied in a diverse range of fields, from metal-forming to cardiac modelling, there are a limited number of software tools available that allow simulating any phase-field problem and that are highly accessible. To address this, a new open source API and software package called SymPhas is developed for simulating phase-field and phase-field crystal in 1-, 2- and 3-dimensions. Phase-field …


Ciculant Matrix And Fft, Thomas S. Devries Aug 2021

Ciculant Matrix And Fft, Thomas S. Devries

Undergraduate Student Research Internships Conference

The goal was to produce all the eigen values for a BOHEMIAN matrices using coefficient set {0, 1, -1, i, -i} of a size 15 vector. There are 5^15 eigen values so it was attempted to be done in parrallel for parts of the algorithm that permitted.


Using An Analytical Approach Of The Kuramoto Model To Stimulate 3d Neural Activity Of The Stomach, Morteza Al Rabya Aug 2021

Using An Analytical Approach Of The Kuramoto Model To Stimulate 3d Neural Activity Of The Stomach, Morteza Al Rabya

Undergraduate Student Research Internships Conference

No abstract provided.


Eigenvalue Problems On Atypical Domains - The Finite Element Method, Toufiic Ayoub Aug 2021

Eigenvalue Problems On Atypical Domains - The Finite Element Method, Toufiic Ayoub

Undergraduate Student Research Internships Conference

Why do we care about eigenvalues and eigenvectors? What's the big deal? For many people enrolled in entry level linear algebra courses, these concepts seem like far fetched abstractions that become pointless exercises in computation. But in reality, these fundamental ideas are vital to how we live our lives every single day. But how?


Credit Risk Measurement And Application Based On Bp Neural Networks, Jingshi Luo Aug 2021

Credit Risk Measurement And Application Based On Bp Neural Networks, Jingshi Luo

Electronic Thesis and Dissertation Repository

The emergence of P2P(Peer-to-peer) lending has opened up a popular way for micro-finance, and the financial lending industry in many countries is growing rapidly. While it facilitates lending to individuals and small and medium-sized enterprises, improving the risk identification capability of the P2P platform is vitally necessary for the sustainable development of the platform. Especially the potential credit risk caused by information asymmetry, this may be fatal to this industry. In order to alleviate the adverse effects of this problem, this paper takes Lending Club’s real loan data as the empirical research object. The random forest is used to screen …