Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics

University of New Orleans

Keyword
Publication Year
Publication
Publication Type

Articles 1 - 28 of 28

Full-Text Articles in Physical Sciences and Mathematics

Ocean Wave Prediction And Characterization For Intelligent Maritime Transportation, Pujan Pokhrel Aug 2022

Ocean Wave Prediction And Characterization For Intelligent Maritime Transportation, Pujan Pokhrel

University of New Orleans Theses and Dissertations

The national Earth System Prediction (ESPC) initiative aims to develop the predictions
for the next generation predictions of atmosphere, ocean, and sea-ice interactions in the scale of days to decades. This dissertation seeks to demonstrate the methods we can use to improve the ESPC models, especially the ocean prediction model. In the application side of the weather forecasts, this dissertation explores imitation learning with constraints to solve combinatorial optimization problems, focusing on the weather routing of surface vessels. Prediction of ocean waves is essential for various purposes, including vessel routing, ocean energy harvesting, agriculture, etc. Since the machine learning approaches …


State Estimation—Beyond Gaussian Filtering, Haozhan Meng May 2022

State Estimation—Beyond Gaussian Filtering, Haozhan Meng

University of New Orleans Theses and Dissertations

This dissertation considers the state estimation problems with symmetric Gaussian/asymmetric skew-Gaussian assumption under linear/nonlinear systems. It consists of three parts. The first part proposes a new recursive finite-dimensional exact density filter based on the linear skew-Gaussian system. The second part adopts a skew-symmetric representation (SSR) of distribution for nonlinear skew-Gaussian estimation. The third part gives an optimized Gauss-Hermite quadrature (GHQ) rule for numerical integration with respect to Gaussian integrals and applies it to nonlinear Gaussian filters.

We first develop a linear system model driven by skew-Gaussian processes and present the exact filter for the posterior density with fixed dimensional recursive …


General Nonlinear-Material Elasticity In Classical One-Dimensional Solid Mechanics, Ronald Joseph Giardina Jr Aug 2019

General Nonlinear-Material Elasticity In Classical One-Dimensional Solid Mechanics, Ronald Joseph Giardina Jr

University of New Orleans Theses and Dissertations

We will create a class of generalized ellipses and explore their ability to define a distance on a space and generate continuous, periodic functions. Connections between these continuous, periodic functions and the generalizations of trigonometric functions known in the literature shall be established along with connections between these generalized ellipses and some spectrahedral projections onto the plane, more specifically the well-known multifocal ellipses. The superellipse, or Lam\'{e} curve, will be a special case of the generalized ellipse. Applications of these generalized ellipses shall be explored with regards to some one-dimensional systems of classical mechanics. We will adopt the Ramberg-Osgood relation …


Exact Feedback Linearization Of Systems With State-Space Modulation And Demodulation, Nikolaos I. Xiros Deng May 2019

Exact Feedback Linearization Of Systems With State-Space Modulation And Demodulation, Nikolaos I. Xiros Deng

University of New Orleans Theses and Dissertations

The control theory of nonlinear systems has been receiving increasing attention in recent years, both for its technical importance as well as for its impact in various fields of application. In several key areas, such as aerospace, chemical and petrochemical industries, bioengineering, and robotics, a new practical application for this tool appears every day. System nonlinearity is characterized when at least one component or subsystem is nonlinear. Classical methods used in the study of linear systems, particularly superposition, are not usually applied to the nonlinear systems. It is necessary to use other methods to study the control of these systems. …


Risk Assessment Of Dropped Cylindrical Objects In Offshore Operations, Adelina Steven May 2018

Risk Assessment Of Dropped Cylindrical Objects In Offshore Operations, Adelina Steven

University of New Orleans Theses and Dissertations

Dropped object are defined as any object that fall under its own weight from a previously static position or fell due to an applied force from equipment or a moving object. It is among the top ten causes of injuries and fatality in oil and gas industry. To solve this problem, several in-house tools and guidelines is developed over time to assess the risk of dropped objects on the sub-sea structures. This thesis focuses on compiling and comparing those methods in hope to improve the recommended practices available in the market. A simple modification is done on the in-house tools …


Mathematical Formulation Of Fusion Energy Magnetohydrodynamics, Nikolaos I. Xiros Dec 2017

Mathematical Formulation Of Fusion Energy Magnetohydrodynamics, Nikolaos I. Xiros

University of New Orleans Theses and Dissertations

Chapter 1 presents the basic principles of Controlled Thermonuclear Fusion, and the approaches to achieve nuclear fusion on Earth. Furthermore, the basic components of the Tokamak, the reactor which will house the fusion reaction, are analyzed. Finally, the chapter ends with a discussion on how the present thesis is related to the Controlled Thermonuclear Fusion. Chapter 2 introduces briefly the basic concepts of the Electromagnetic and Magnetohydrodynamic theories as well as MHD turbulence. Chapter 3 presents a first glance in OpenFOAM CFD library. Chapter 4 introduces the Orszag-Tang vortex flow, which is a benchmark test case for MHD numerical models. …


An Application Of M-Matrices To Preserve Bounded Positive Solutions To The Evolution Equations Of Biofilm Models, Richard S. Landry Jr. Dec 2017

An Application Of M-Matrices To Preserve Bounded Positive Solutions To The Evolution Equations Of Biofilm Models, Richard S. Landry Jr.

University of New Orleans Theses and Dissertations

In this work, we design a linear, two step implicit finite difference method to approximate the solutions of a biological system that describes the interaction between a microbial colony and a surrounding substrate. Three separate models are analyzed, all of which can be described as systems of partial differential equations (PDE)s with nonlinear diffusion and reaction, where the biological colony grows and decays based on the substrate bioavailability. The systems under investigation are all complex models describing the dynamics of biological films. In view of the difficulties to calculate analytical solutions of the models, we design here a numerical technique …


Underwater Acoustic Signal Analysis Toolkit, Kirk Bienvenu Jr Dec 2017

Underwater Acoustic Signal Analysis Toolkit, Kirk Bienvenu Jr

University of New Orleans Theses and Dissertations

This project started early in the summer of 2016 when it became evident there was a need for an effective and efficient signal analysis toolkit for the Littoral Acoustic Demonstration Center Gulf Ecological Monitoring and Modeling (LADC-GEMM) Research Consortium. LADC-GEMM collected underwater acoustic data in the northern Gulf of Mexico during the summer of 2015 using Environmental Acoustic Recording Systems (EARS) buoys. Much of the visualization of data was handled through short scripts and executed through terminal commands, each time requiring the data to be loaded into memory and parameters to be fed through arguments. The vision was to develop …


On The Ramberg-Osgood Stress-Strain Model And Large Deformations Of Cantilever Beams, Ronald J. Giardina Jr Aug 2017

On The Ramberg-Osgood Stress-Strain Model And Large Deformations Of Cantilever Beams, Ronald J. Giardina Jr

University of New Orleans Theses and Dissertations

In this thesis the Ramberg-Osgood nonlinear model for describing the behavior of many different materials is investigated. A brief overview of the model as it is currently used in the literature is undertaken and several misunderstandings and possible pitfalls in its application is pointed out, especially as it pertains to more recent approaches to finding solutions involving the model. There is an investigation of the displacement of a cantilever beam under a combined loading consisting of a distributed load across the entire length of the beam and a point load at its end and new solutions to this problem are …


Numerical Solutions Of Generalized Burgers' Equations For Some Incompressible Non-Newtonian Fluids, Yupeng Shu Aug 2015

Numerical Solutions Of Generalized Burgers' Equations For Some Incompressible Non-Newtonian Fluids, Yupeng Shu

University of New Orleans Theses and Dissertations

The author presents some generalized Burgers' equations for incompressible and isothermal flow of viscous non-Newtonian fluids based on the Cross model, the Carreau model, and the Power-Law model and some simple assumptions on the flows. The author numerically solves the traveling wave equations for the Cross model, the Carreau model, the Power-Law model by using industrial data. The author proves existence and uniqueness of solutions to the traveling wave equations of each of the three models. The author also provides numerical estimates of the shock thickness as well as maximum strain $\varepsilon_{11}$ for each of the fluids.


A Study On The Integration Of A Novel Absorption Chiller Into A Microscale Combined Cooling, Heating, And Power (Micro-Cchp) System, Scott J. Richard Dec 2013

A Study On The Integration Of A Novel Absorption Chiller Into A Microscale Combined Cooling, Heating, And Power (Micro-Cchp) System, Scott J. Richard

University of New Orleans Theses and Dissertations

This study explores the application of micro-CCHP systems that utilize a 30 kW gas microturbine and an absorption chiller. Engineering Equation Solver (EES) is used to model a novel single-effect and double-effect water-lithium bromide absorption chiller that integrates the heat recovery unit and cooling tower of a conventional CCHP system into the chiller’s design, reducing the cost and footprint of the system. The results of the EES model are used to perform heat and material balances for the micro-CCHP systems employing the novel integrated chillers, and energy budgets for these systems are developed. While the thermal performance of existing CCHP …


Stress Analysis Of Ramberg-Osgood And Hollomon 1-D Axial Rods, Ronald J. Giardina Jr May 2013

Stress Analysis Of Ramberg-Osgood And Hollomon 1-D Axial Rods, Ronald J. Giardina Jr

University of New Orleans Theses and Dissertations

In this paper we present novel analytic and finite element solutions to 1-D straight rods made of Ramberg-Osgood and Hollomon type materials. These material models are studied because they are a more accurate representation of the material properties of certain metals used often in manufacturing than the simpler composite linear types of stress/strain models. Here, various types of loads are considered and solutions are compared against some linear models. It is shown that the nonlinear models do have manageable solutions, which produce important differences in the results - attributes which suggest that these models should take a more prominent place …


Blow-Up Of Solutions To The Generalized Inviscid Proudman-Johnson Equation, Alejandro Sarria Dec 2012

Blow-Up Of Solutions To The Generalized Inviscid Proudman-Johnson Equation, Alejandro Sarria

University of New Orleans Theses and Dissertations

The generalized inviscid Proudman-Johnson equation serves as a model for n-dimensional incompressible Euler flow, gas dynamics, high-frequency waves in shallow waters, and orientation of waves in a massive director field of a nematic liquid crystal. Furthermore, the equation also serves as a tool for studying the role that the natural fluid processes of convection and stretching play in the formation of spontaneous singularities, or of their absence.

In this work, we study blow-up, and blow-up properties, in solutions to the generalized, inviscid Proudman-Johnson equation endowed with periodic or Dirichlet boundary conditions. More particularly,regularity of solutions in an Lp setting will …


Analytic And Finite Element Solutions Of The Power-Law Euler-Bernoulli Beams, Dongming Wei, Yu Liu May 2012

Analytic And Finite Element Solutions Of The Power-Law Euler-Bernoulli Beams, Dongming Wei, Yu Liu

Mathematics Faculty Publications

In this paper, we use Hermite cubic finite elements to approximate the solutions

of a nonlinear Euler-Bernoulli beam equation. The equation is derived

from Hollomon’s generalized Hooke’s law for work hardening materials with

the assumptions of the Euler-Bernoulli beam theory. The Ritz-Galerkin finite

element procedure is used to form a finite dimensional nonlinear program

problem, and a nonlinear conjugate gradient scheme is implemented to find

the minimizer of the Lagrangian. Convergence of the finite element approximations

is analyzed and some error estimates are presented. A Matlab finite

element code is developed to provide numerical solutions to the beam equation.

Some …


Influence Of Damping On Hyperbolic Equations With Parabolic Degeneracy, Katarzyna Saxton, Ralph Saxton Jan 2012

Influence Of Damping On Hyperbolic Equations With Parabolic Degeneracy, Katarzyna Saxton, Ralph Saxton

Mathematics Faculty Publications

This paper examines the effect of damping on a nonstrictly hyperbolic 2 x 2 system. It is shown that the growth of singularities is not restricted as in the strictly hyperbolic case where dissipation can be strong enough to preserve the smoothness of solutions globally in time. Here, irrespective of the stabilizing properties of damping, solutions are found to break down in finite time on a line where two eigenvalues coincide in state space.


Critical Buckling Loads Of The Perfect Hollomon’S Power-Law Columns, Dongming Wei, Alejandro Sarria, Mohamed Elgindi Jan 2012

Critical Buckling Loads Of The Perfect Hollomon’S Power-Law Columns, Dongming Wei, Alejandro Sarria, Mohamed Elgindi

Mathematics Faculty Publications

In this work, we present analytic formulas for calculating the critical buckling states of some plastic axial columns of constant cross-sections. The associated critical buckling loads are calculated by Euler-type analytic formulas and the associated deformed shapes are presented in terms of generalized trigonometric functions. The plasticity of the material is defined by the Holloman’s power-law equation. This is an extension of the Euler critical buckling loads of perfect elastic columns to perfect plastic columns. In particular, critical loads for perfect straight plastic columns with circular and rectangular cross-sections are calculated for a list of commonly used metals. Connections and …


On The Global Solvability Of A Class Of Fourth-Order Nonlinear Boundary Value Problems, M.B.M. Elgindi, Dongming Wei Jan 2012

On The Global Solvability Of A Class Of Fourth-Order Nonlinear Boundary Value Problems, M.B.M. Elgindi, Dongming Wei

Mathematics Faculty Publications

In this paper we prove the global solvability of a class of fourth-order nonlinear boundary value problems that govern the deformation of a Hollomon’s power-law plastic beam subject to an axial compression and nonlinear lateral constrains. For certain ranges of the acting axial compression force, the solvability of the equations follows from the monotonicity of the fourth order nonlinear differential operator. Beyond these ranges the monotonicity of the operator is lost. It is shown that, in this case, the global solvability may be generated by the lower order nonlinear terms of the equations for a certain type of constrains.


Travelling Wave Solutions Of Burgers' Equation For Gee-Lyon Fluid Flows, Dongming Wei, Ken Holladay Jan 2012

Travelling Wave Solutions Of Burgers' Equation For Gee-Lyon Fluid Flows, Dongming Wei, Ken Holladay

Mathematics Faculty Publications

In this work we present some analytic and semi-analytic traveling wave solutions of generalized Burger' equation for isothermal unidirectional flow of viscous non-Newtonian fluids obeying Gee-Lyon nonlinear rheological equation. The solution of Burgers' equation for Newtonian flow as a special case. We also derive estimates of shock thickness for non-Newtonian flows.


An H1 Model For Inextensible Strings, Stephen C. Preston, Ralph Saxton Jan 2012

An H1 Model For Inextensible Strings, Stephen C. Preston, Ralph Saxton

Mathematics Faculty Publications

We study geodesics of the H1 Riemannian metric (see article for equation) on the space of inextensible curves (see article for equation). This metric is a regularization of the usual L2 metric on curves, for which the submanifold geometry and geodesic equations have been analyzed already. The H1 geodesic equation represents a limiting case of the Pochhammer-Chree equation from elasticity theory. We show the geodesic equation is C in the Banach topology C1 ([0,1], R2), and thus there is a smooth Riemannian exponential map. Furthermore, if we hold one of the curves fixed, …


Blow-Up Of Solutions To The Generalized Inviscid Proudman-Johnson Equation, Alejandro Sarria, Ralph Saxton Jan 2012

Blow-Up Of Solutions To The Generalized Inviscid Proudman-Johnson Equation, Alejandro Sarria, Ralph Saxton

Mathematics Faculty Publications

For arbitrary values of a parameter --- finite-time blowup of solutions to the generalized, inviscid Proudman Johnson equation is studied via a direct approach which involves the derivation of representation formulae for solutions to the problem.


Some Generalized Trigonometric Sine Functions And Their Applications, Dongming Wei, Yu Liu, Mohamed B. Elgindi Jan 2012

Some Generalized Trigonometric Sine Functions And Their Applications, Dongming Wei, Yu Liu, Mohamed B. Elgindi

Mathematics Faculty Publications

In this paper, it is shown that D. Shelupsky's generalized sine function, and various general sine functions developed by P. Drabek, R. Manasevich and M. Otani, P. Lindqvist, including the generalized Jacobi elliptic sine function of S. Takeuchi can be defined by systems of first order nonlinear ordinary differential equations with initial conditions. The structure of the system of differential equations is shown to be related to the Hamilton System in Lagrangian Mechanics. Numerical solutions of the ODE systems are solved to demonstrate the sine functions graphically. It is also demonstrated that the some of the generalized sine functions can …


A Dynamical Study Of The Evolution Of Pressure Waves Propagating Through A Semi-Infinite Region Of Homogeneous Gas Combustion Subject To A Time-Harmonic Signal At The Boundary, John Eslick Dec 2011

A Dynamical Study Of The Evolution Of Pressure Waves Propagating Through A Semi-Infinite Region Of Homogeneous Gas Combustion Subject To A Time-Harmonic Signal At The Boundary, John Eslick

University of New Orleans Theses and Dissertations

In this dissertation, the evolution of a pressure wave driven by a harmonic signal on the boundary during gas combustion is studied. The problem is modeled by a nonlinear, hyperbolic partial differential equation. Steady-state behavior is investigated using the perturbation method to ensure that enough time has passed for any transient effects to have dissipated. The zeroth, first and second-order perturbation solutions are obtained and their moduli are plotted against frequency. It is seen that the first and second-order corrections have unique maxima that shift to the right as the frequency decreases and to the left as the frequency increases. …


Global Existence Of Some Infinite Energy Solutions For A Perfect Incompressible Fluid, Ralph A. Saxton, Feride Tiğlay Nov 2008

Global Existence Of Some Infinite Energy Solutions For A Perfect Incompressible Fluid, Ralph A. Saxton, Feride Tiğlay

Mathematics Faculty Publications

This paper provides results on local and global existence for a class of solutions to the Euler equations for an incompressible, inviscid fluid. By considering a class of solutions which exhibits a characteristic growth at infinity we obtain an initial value problem for a nonlocal equation. We establish local well-posedness in all dimensions and persistence in time of these solutions for three and higher dimensions. We also examine a weaker class of global solutions.


Phase Transitions And Change Of Type In Low-Temperature Heat, Ralph A. Saxton, Katarzyna Saxton Aug 2006

Phase Transitions And Change Of Type In Low-Temperature Heat, Ralph A. Saxton, Katarzyna Saxton

Mathematics Faculty Publications

Classical heat pulse experiments have shown heat to propagate in waves through crystalline materials at temperatures close to absolute zero. With increasing temperature, these waves slow down and finally disappear, to be replaced by diffusive heat propagation. Several features surrounding this phenomenon are examined in this work. The model used switches between an internal parameter (or extended thermodynamics) description and a classical (linear or nonlinear) Fourier law setting. This leads to a hyperbolic-parabolic change of type, which allows wavelike features to appear beneath the transition temperature and diffusion above. We examine the region around and immediately below the transition temperature, …


Finite Element Solutions Of Heat Transfer In Molten Polymer Flow In Tubes With Viscous Dissipation, Dongming Wei, Haibiao Luo Jan 2003

Finite Element Solutions Of Heat Transfer In Molten Polymer Flow In Tubes With Viscous Dissipation, Dongming Wei, Haibiao Luo

Mathematics Faculty Publications

This paper presents the results of finite element analysis of a heat transfer problem of flowing polymer melts in a tube with constant ambient temperature. The rheological behavior of the melt is described by a temperature dependent power-law model. Aviscous dissipation term is included in the energy equation. Temperature profiles are obtained for different tube lengths and different entrance temperatures. The results are compared with some similar results in the literature.


Decay Estimates Of Heat Transfer To Melton Polymer Flow In Pipes With Viscous Dissipation, Dongming Wei, Zhenbu Zhang Jan 2001

Decay Estimates Of Heat Transfer To Melton Polymer Flow In Pipes With Viscous Dissipation, Dongming Wei, Zhenbu Zhang

Mathematics Faculty Publications

In this work, we compare a parabolic equation with an elliptic equation both of which are used in modeling temperature profile of a power-law polymer flow in a semi-infinite straight pipe with circular cross section. We show that both models are well-posed and we derive exponential rates of convergence of the two solutions to the same steady state solution away from the entrance. We also show estimates for difference between the two solutions in terms of physical data.


A Priori Lρ Error Estimates For Galerkin Approximations To Porous Medium And Fast Diffusion Equations, Dongming Wei, Lew Lefton Feb 1999

A Priori Lρ Error Estimates For Galerkin Approximations To Porous Medium And Fast Diffusion Equations, Dongming Wei, Lew Lefton

Mathematics Faculty Publications

Galerkin approximations to solutions of a Cauchy-Dirichlet prob-

lem governed by a generalized porous medium equation.


Existence, Uniqueness, And Numerical Analysis Of Solutions Of A Quasilinear Parabolic Problem, Dongming Wei Apr 1992

Existence, Uniqueness, And Numerical Analysis Of Solutions Of A Quasilinear Parabolic Problem, Dongming Wei

Mathematics Faculty Publications

A quasilinear parabolic problem is studied. By using the method of lines, the existence and uniqueness of a solution to the initial boundary value problem with sufficiently smooth initial conditions are shown. Also given are L2 error estimates for the error between the extended fully discrete finite element solutions and the exact solution.