Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Radial Basis Function Differential Quadrature Method For The Numerical Solution Of Partial Differential Equations, Daniel Watson Dec 2017

Radial Basis Function Differential Quadrature Method For The Numerical Solution Of Partial Differential Equations, Daniel Watson

Dissertations

In the numerical solution of partial differential equations (PDEs), there is a need for solving large scale problems. The Radial Basis Function Differential Quadrature (RBFDQ) method and local RBF-DQ method are applied for the solutions of boundary value problems in annular domains governed by the Poisson equation, inhomogeneous biharmonic equation, and the inhomogeneous Cauchy-Navier equations of elasticity. By choosing the collocation points properly, linear systems can be obtained so that the coefficient matrices have block circulant structures. The resulting systems can be efficiently solved using matrix decomposition algorithms (MDAs) and fast Fourier transforms (FFTs). For the local RBFDQ method, the …


Eignefunctions For Partial Differential Equations On Two-Dimensional Domains With Piecewise Constant Coefficients, Abdullah Muheel Momit Aurko Aug 2017

Eignefunctions For Partial Differential Equations On Two-Dimensional Domains With Piecewise Constant Coefficients, Abdullah Muheel Momit Aurko

Master's Theses

In this thesis, we develop a highly accurate and efficient algorithm for computing the solution of a partial differential equation defined on a two-dimensional domain with discontinuous coefficients. An example of such a problem is for modeling the diffusion of heat energy in two space dimensions, in the case where the spatial domain represents a medium consisting of two different but homogeneous materials, with periodic boundary conditions.

Since diffusivity changes based on the material, it will be represented using a piecewise constant function, and this results in the formation of a complicated mathematical model. Such a model is impossible to …


Numerical Solution Of Partial Differential Equations Using Polynomial Particular Solutions, Thir R. Dangal Aug 2017

Numerical Solution Of Partial Differential Equations Using Polynomial Particular Solutions, Thir R. Dangal

Dissertations

Polynomial particular solutions have been obtained for certain types of partial differential operators without convection terms. In this dissertation, a closed-form particular solution for more general partial differential operators with constant coefficients has been derived for polynomial basis functions. The newly derived particular solutions are further coupled with the method of particular solutions (MPS) for numerically solving a large class of elliptic partial differential equations. In contrast to the use of Chebyshev polynomial basis functions, the proposed approach is more flexible in selecting the collocation points inside the domain. Polynomial basis functions are well-known for yielding ill-conditioned systems when their …


Solution Of Pdes For First-Order Photobleaching Kinetics Using Krylov Subspace Spectral Methods, Somayyeh Sheikholeslami Aug 2017

Solution Of Pdes For First-Order Photobleaching Kinetics Using Krylov Subspace Spectral Methods, Somayyeh Sheikholeslami

Dissertations

We solve the first order reaction-diffusion equations which describe binding-diffusion kinetics using a photobleaching scanning profile of a confocal laser scanning microscope approximated by a Gaussian laser profile. We show how to solve these equations with prebleach steady-state initial conditions using a time-domain method known as a Krylov Subspace Spectral (KSS) method. KSS methods are explicit methods for solving time- dependent variable-coefficient partial differential equations (PDEs). KSS methods are advantageous compared to other methods because of their stability and their superior scalability. These advantages are obtained by applying Gaussian quadrature rules in the spectral domain developed by Golub and Meurant. …


Efficient Denoising And Sharpening Of Color Images Through Numerical Solution Of Nonlinear Diffusion Equations, Linh T. Duong May 2017

Efficient Denoising And Sharpening Of Color Images Through Numerical Solution Of Nonlinear Diffusion Equations, Linh T. Duong

Honors Theses

The purpose of this project is to enhance color images through denoising and sharpening, two important branches of image processing, by mathematically modeling the images. Modifications are made to two existing nonlinear diffusion image processing models to adapt them to color images. This is done by treating the red, green, and blue (RGB) channels of color images independently, contrary to the conventional idea that the channels should not be treated independently. A new numerical method is needed to solve our models for high resolution images since current methods are impractical. To produce an efficient method, the solution is represented as …


Solving The Yang-Baxter Matrix Equation, Mallory O. Jennings May 2017

Solving The Yang-Baxter Matrix Equation, Mallory O. Jennings

Honors Theses

The Yang-Baxter equation is one that has been widely used and studied in areas such as statistical mechanics, braid groups, knot theory, and quantum mechanics. While many sets of solutions have been found for this equation, it is still an open problem. In this project, I solve the Yang-Baxter matrix equation that is similar in format to the Yang-Baxter equation. I try to solve the corresponding Yang-Baxter matrix equation, ������=������, where X is an unknown ������ matrix, and ��=[0����0] or [0−��−��0], by using the Jordan canonical form to find infinitely many solutions.


Krylov Subspace Spectral Methods For Pdes In Polar And Cylindrical Geometries, Megan Richardson May 2017

Krylov Subspace Spectral Methods For Pdes In Polar And Cylindrical Geometries, Megan Richardson

Dissertations

As a result of stiff systems of ODEs, difficulties arise when using time stepping methods for PDEs. Krylov subspace spectral (KSS) methods get around the difficulties caused by stiffness by computing each component of the solution independently. In this dissertation, we extend the KSS method to a circular domain using polar coordinates. In addition to using these coordinates, we will approximate the solution using Legendre polynomials instead of Fourier basis functions. We will also compare KSS methods on a time-independent PDE to other iterative methods. Then we will shift our focus to three families of orthogonal polynomials on the interval …