Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Gravity-Driven Thin Liquid Films With Insoluble Surfactant: Smooth Traveling Waves, Rachel Levy, Michael Shearer, Thomas P. Witelski Dec 2007

Gravity-Driven Thin Liquid Films With Insoluble Surfactant: Smooth Traveling Waves, Rachel Levy, Michael Shearer, Thomas P. Witelski

All HMC Faculty Publications and Research

The flow of a thin layer of fluid down an inclined plane is modified by the presence of insoluble surfactant. For any finite surfactant mass, traveling waves are constructed for a system of lubrication equations describing the evolution of the free-surface fluid height and the surfactant concentration. The one-parameter family of solutions is investigated using perturbation theory with three small parameters: the coefficient of surface tension, the surfactant diffusivity, and the coefficient of the gravity-driven diffusive spreading of the fluid. When all three parameters are zero, the nonlinear PDE system is hyperbolic/degenerateparabolic, and admits traveling wave solutions in which the …


Greedy Signal Recovery And Uncertainty Principles, Deanna Needell, Roman Vershynin Jul 2007

Greedy Signal Recovery And Uncertainty Principles, Deanna Needell, Roman Vershynin

CMC Faculty Publications and Research

This paper seeks to bridge the two major algorithmic approaches to sparse signal recovery from an incomplete set of linear measurements – L1-minimization methods and iterative methods (Matching Pursuits). We find a simple regularized version of the Orthogonal Matching Pursuit (ROMP) which has advantages of both approaches: the speed and transparency of OMP and the strong uniform guarantees of the L1-minimization. Our algorithm ROMP reconstructs a sparse signal in a number of iterations linear in the sparsity, and the reconstruction is exact provided the linear measurements satisfy the Uniform Uncertainty Principle. In the case of inaccurate measurements and approximately sparse …


As Flat As Possible, Jon T. Jacobsen Jul 2007

As Flat As Possible, Jon T. Jacobsen

All HMC Faculty Publications and Research

How does one determine a surface which is as flat as possible, such as those created by soap film surfaces? What does it mean to be as flat as possible? In this paper we address this question from two distinct points of view, one local and one global in nature. Continuing with this theme, we put a temporal twist on the question and ask how to evolve a surface so as to flatten it as efficiently as possible. This elementary discussion provides a platform to introduce a wide range of advanced topics in partial differential equations and helps students …


Nonlinear Dynamics In Combinatorial Games: Renormalizing Chomp, Eric J. Friedman, Adam S. Landsberg Jun 2007

Nonlinear Dynamics In Combinatorial Games: Renormalizing Chomp, Eric J. Friedman, Adam S. Landsberg

WM Keck Science Faculty Papers

We develop a new approach to combinatorial games that reveals connections between such games and some of the central ideas of nonlinear dynamics: scaling behaviors, complex dynamics and chaos, universality, and aggregation processes. We take as our model system the combinatorial game Chomp, which is one of the simplest in a class of "unsolved" combinatorial games that includes Chess, Checkers, and Go. We discover that the game possesses an underlying geometric structure that "grows" (reminiscent of crystal growth), and show how this growth can be analyzed using a renormalization procedure adapted from physics. In effect, this methodology allows one to …


Approximations Of Continuous Newton's Method: An Extension Of Cayley's Problem, Jon T. Jacobsen, Owen Lewis '05, Bradley Tennis '06 Feb 2007

Approximations Of Continuous Newton's Method: An Extension Of Cayley's Problem, Jon T. Jacobsen, Owen Lewis '05, Bradley Tennis '06

All HMC Faculty Publications and Research

Continuous Newton's Method refers to a certain dynamical system whose associated flow generically tends to the roots of a given polynomial. An Euler approximation of this system, with step size h=1, yields the discrete Newton's method algorithm for finding roots. In this note we contrast Euler approximations with several different approximations of the continuous ODE system and, using computer experiments, consider their impact on the associated fractal basin boundaries of the roots


Turing Patterns On Growing Spheres: The Exponential Case, Julijana Gjorgjieva, Jon T. Jacobsen Jan 2007

Turing Patterns On Growing Spheres: The Exponential Case, Julijana Gjorgjieva, Jon T. Jacobsen

All HMC Faculty Publications and Research

We consider Turing patterns for reaction-diffusion systems on the surface of a growing sphere. In particular, we are interested in the effect of dynamic growth on the pattern formation. We consider exponential isotropic growth of the sphere and perform a linear stability analysis and compare the results with numerical simulations.