Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics

PDF

Algorithms

Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 39

Full-Text Articles in Physical Sciences and Mathematics

Data And Algorithmic Modeling Approaches To Count Data, Andraya Hack May 2022

Data And Algorithmic Modeling Approaches To Count Data, Andraya Hack

Honors College Theses

Various techniques are used to create predictions based on count data. This type of data takes the form of a non-negative integers such as the number of claims an insurance policy holder may make. These predictions can allow people to prepare for likely outcomes. Thus, it is important to know how accurate the predictions are. Traditional statistical approaches for predicting count data include Poisson regression as well as negative binomial regression. Both methods also have a zero-inflated version that can be used when the data has an overabundance of zeros. Another procedure is to use computer algorithms, also known as …


Finding New Limit Points Of Mahler Measure By Methods Of Missing Data Restoration, Jean-Marc Sac-Epee J.M Sac-Epee, Souad El Otmani, Armand Maul, Georges Rhin Jun 2021

Finding New Limit Points Of Mahler Measure By Methods Of Missing Data Restoration, Jean-Marc Sac-Epee J.M Sac-Epee, Souad El Otmani, Armand Maul, Georges Rhin

BAU Journal - Science and Technology

It is well known that the set of Mahler measures of single variable polynomial has limit points of which a list established by D. Boyd and M. Mossinghoff has been extended through approaches based on genetic algorithms. In this paper, we wish to further extend the list of known limit points by adapting a method of missing data restoration.


The “Knapsack Problem” Workbook: An Exploration Of Topics In Computer Science, Steven Cosares Jun 2021

The “Knapsack Problem” Workbook: An Exploration Of Topics In Computer Science, Steven Cosares

Open Educational Resources

This workbook provides discussions, programming assignments, projects, and class exercises revolving around the “Knapsack Problem” (KP), which is widely a recognized model that is taught within a typical Computer Science curriculum. Throughout these discussions, we use KP to introduce or review topics found in courses covering topics in Discrete Mathematics, Mathematical Programming, Data Structures, Algorithms, Computational Complexity, etc. Because of the broad range of subjects discussed, this workbook and the accompanying spreadsheet files might be used as part of some CS capstone experience. Otherwise, we recommend that individual sections be used, as needed, for exercises relevant to a course in …


Lecture 14: Randomized Algorithms For Least Squares Problems, Ilse C.F. Ipsen Apr 2021

Lecture 14: Randomized Algorithms For Least Squares Problems, Ilse C.F. Ipsen

Mathematical Sciences Spring Lecture Series

The emergence of massive data sets, over the past twenty or so years, has lead to the development of Randomized Numerical Linear Algebra. Randomized matrix algorithms perform random sketching and sampling of rows or columns, in order to reduce the problem dimension or compute low-rank approximations. We review randomized algorithms for the solution of least squares/regression problems, based on row sketching from the left, or column sketching from the right. These algorithms tend to be efficient and accurate on matrices that have many more rows than columns. We present probabilistic bounds for the amount of sampling required to achieve a …


Lecture 13: A Low-Rank Factorization Framework For Building Scalable Algebraic Solvers And Preconditioners, X. Sherry Li Apr 2021

Lecture 13: A Low-Rank Factorization Framework For Building Scalable Algebraic Solvers And Preconditioners, X. Sherry Li

Mathematical Sciences Spring Lecture Series

Factorization based preconditioning algorithms, most notably incomplete LU (ILU) factorization, have been shown to be robust and applicable to wide ranges of problems. However, traditional ILU algorithms are not amenable to scalable implementation. In recent years, we have seen a lot of investigations using low-rank compression techniques to build approximate factorizations.
A key to achieving lower complexity is the use of hierarchical matrix algebra, stemming from the H-matrix research. In addition, the multilevel algorithm paradigm provides a good vehicle for a scalable implementation. The goal of this lecture is to give an overview of the various hierarchical matrix formats, such …


Lecture 03: Hierarchically Low Rank Methods And Applications, David Keyes Apr 2021

Lecture 03: Hierarchically Low Rank Methods And Applications, David Keyes

Mathematical Sciences Spring Lecture Series

As simulation and analytics enter the exascale era, numerical algorithms, particularly implicit solvers that couple vast numbers of degrees of freedom, must span a widening gap between ambitious applications and austere architectures to support them. We present fifteen universals for researchers in scalable solvers: imperatives from computer architecture that scalable solvers must respect, strategies towards achieving them that are currently well established, and additional strategies currently being developed for an effective and efficient exascale software ecosystem. We consider recent generalizations of what it means to “solve” a computational problem, which suggest that we have often been “oversolving” them at the …


Lecture 02: Tile Low-Rank Methods And Applications (W/Review), David Keyes Apr 2021

Lecture 02: Tile Low-Rank Methods And Applications (W/Review), David Keyes

Mathematical Sciences Spring Lecture Series

As simulation and analytics enter the exascale era, numerical algorithms, particularly implicit solvers that couple vast numbers of degrees of freedom, must span a widening gap between ambitious applications and austere architectures to support them. We present fifteen universals for researchers in scalable solvers: imperatives from computer architecture that scalable solvers must respect, strategies towards achieving them that are currently well established, and additional strategies currently being developed for an effective and efficient exascale software ecosystem. We consider recent generalizations of what it means to “solve” a computational problem, which suggest that we have often been “oversolving” them at the …


Assessing Computational Thinking, Daniel Duckworth Aug 2019

Assessing Computational Thinking, Daniel Duckworth

2009 - 2019 ACER Research Conferences

This paper provides some context for the role of computation thinking (CT) in the Australian Curriculum, an abridged literature review of CT as a problem-solving framework from the International Computer and Information Literacy Study (ICILS) 2018 assessment framework and some examples of how CT has been used to solve real-world problems. Finally, this paper presents ways to teach and assess CT.


Assessing Computational Thinking, Daniel Duckworth Aug 2019

Assessing Computational Thinking, Daniel Duckworth

Daniel Duckworth

This paper provides some context for the role of computation thinking (CT) in the Australian Curriculum, an abridged literature review of CT as a problem-solving framework from the International Computer and Information Literacy Study (ICILS) 2018 assessment framework and some examples of how CT has been used to solve real-world problems. Finally, this paper presents ways to teach and assess CT.


A Mathematical Framework On Machine Learning: Theory And Application, Bin Shi Nov 2018

A Mathematical Framework On Machine Learning: Theory And Application, Bin Shi

FIU Electronic Theses and Dissertations

The dissertation addresses the research topics of machine learning outlined below. We developed the theory about traditional first-order algorithms from convex opti- mization and provide new insights in nonconvex objective functions from machine learning. Based on the theory analysis, we designed and developed new algorithms to overcome the difficulty of nonconvex objective and to accelerate the speed to obtain the desired result. In this thesis, we answer the two questions: (1) How to design a step size for gradient descent with random initialization? (2) Can we accelerate the current convex optimization algorithms and improve them into nonconvex objective? For application, …


Computational Algorithms For Improved Representation Of The Model Error Covariance In Weak-Constraint 4d-Var, Jeremy A. Shaw Mar 2017

Computational Algorithms For Improved Representation Of The Model Error Covariance In Weak-Constraint 4d-Var, Jeremy A. Shaw

Dissertations and Theses

Four-dimensional variational data assimilation (4D-Var) provides an estimate to the state of a dynamical system through the minimization of a cost functional that measures the distance to a prior state (background) estimate and observations over a time window. The analysis fit to each information input component is determined by the specification of the error covariance matrices in the data assimilation system (DAS). Weak-constraint 4D-Var (w4D-Var) provides a theoretical framework to account for modeling errors in the analysis scheme. In addition to the specification of the background error covariance matrix, the w4D-Var formulation requires information on the model error statistics and …


The Dc Algorithm & The Constrained Fermat-Torricelli Problem, Nathan Peron Lawrence, George Blikas May 2016

The Dc Algorithm & The Constrained Fermat-Torricelli Problem, Nathan Peron Lawrence, George Blikas

Student Research Symposium

The theory of functions expressible as the Difference of Convex (DC) functions has led to the development of a rich field in applied mathematics known as DC Programming.We survey the work of Pham Dinh Tao and Le Thi Hoai An in order to understand the DC Algorithm (DCA) and its use in solving clustering problems. Further, we present several other methods that generalize the DCA for any norm. These powerful tools enable researchers to reformulate objective functions, not necessarily convex, into DC Programs.

The Fermat-Torricelli problem is visited in light of convex analysis and various norms. Pierre de Fermat proposed …


Minimizing Differences Of Convex Functions With Applications To Facility Location And Clustering, Mau Nam Nguyen, R. Blake Rector, Daniel J. Giles Feb 2016

Minimizing Differences Of Convex Functions With Applications To Facility Location And Clustering, Mau Nam Nguyen, R. Blake Rector, Daniel J. Giles

Mathematics and Statistics Faculty Publications and Presentations

In this paper we develop algorithms to solve generalized Fermat-Torricelli problems with both positive and negative weights and multifacility location problems involving distances generated by Minkowski gauges. We also introduce a new model of clustering based on squared distances to convex sets. Using the Nesterov smoothing technique and an algorithm for minimizing differences of convex functions called the DCA introduced by Tao and An, we develop effective algorithms for solving these problems. We demonstrate the algorithms with a variety of numerical examples.


Filters And Matrix Factorization, Myung-Sin Song, Palle E. T. Jorgensen Nov 2015

Filters And Matrix Factorization, Myung-Sin Song, Palle E. T. Jorgensen

SIUE Faculty Research, Scholarship, and Creative Activity

We give a number of explicit matrix-algorithms for analysis/synthesis

in multi-phase filtering; i.e., the operation on discrete-time signals which

allow a separation into frequency-band components, one for each of the

ranges of bands, say N , starting with low-pass, and then corresponding

filtering in the other band-ranges. If there are N bands, the individual

filters will be combined into a single matrix action; so a representation of

the combined operation on all N bands by an N x N matrix, where the

corresponding matrix-entries are periodic functions; or their extensions to

functions of a complex variable. Hence our setting entails …


The Pc-Tree Algorithm, Kuratowski Subdivisions, And The Torus., Charles J. Suer Aug 2015

The Pc-Tree Algorithm, Kuratowski Subdivisions, And The Torus., Charles J. Suer

Electronic Theses and Dissertations

The PC-Tree algorithm of Shih and Hsu (1999) is a practical linear-time planarity algorithm that provides a plane embedding of the given graph if it is planar and a Kuratowski subdivision otherwise. Remarkably, there is no known linear-time algorithm for embedding graphs on the torus. We extend the PC-Tree algorithm to a practical, linear-time toroidality test for K3;3-free graphs called the PCK-Tree algorithm. We also prove that it is NP-complete to decide whether the edges of a graph can be covered with two Kuratowski subdivisions. This greatly reduces the possibility of a polynomial-time toroidality testing algorithm based solely on edge-coverings …


Sensitivity Of Mixed Models To Computational Algorithms Of Time Series Data, Gunaime Nevine Apr 2015

Sensitivity Of Mixed Models To Computational Algorithms Of Time Series Data, Gunaime Nevine

Doctoral Dissertations

Statistical analysis is influenced by implementation of the algorithms used to execute the computations associated with various statistical techniques. Over many years; very important criteria for model comparison has been studied and examined, and two algorithms on a single dataset have been performed numerous times. The goal of this research is not comparing two or more models on one dataset, but comparing models with numerical algorithms that have been used to solve them on the same dataset.

In this research, different models have been broadly applied in modeling and their contrasting which are affected by the numerical algorithms in different …


Nonsmooth Algorithms And Nesterov's Smoothing Technique For Generalized Fermat-Torricelli Problems, Nguyen Mau Nam, Nguyen Thai An, R. Blake Rector, Jie Sun Oct 2014

Nonsmooth Algorithms And Nesterov's Smoothing Technique For Generalized Fermat-Torricelli Problems, Nguyen Mau Nam, Nguyen Thai An, R. Blake Rector, Jie Sun

Mathematics and Statistics Faculty Publications and Presentations

We present algorithms for solving a number of new models of facility location which generalize the classical Fermat--Torricelli problem. Our first approach involves using Nesterov's smoothing technique and the minimization majorization principle to build smooth approximations that are convenient for applying smooth optimization schemes. Another approach uses subgradient-type algorithms to cope directly with the nondifferentiability of the cost functions. Convergence results of the algorithms are proved and numerical tests are presented to show the effectiveness of the proposed algorithms.


Fast Monte Carlo Algorithms For Computing A Low-Rank Approximation To A Matrix, Vlad S. Burca Apr 2014

Fast Monte Carlo Algorithms For Computing A Low-Rank Approximation To A Matrix, Vlad S. Burca

Senior Theses and Projects

Many of today's applications deal with big quantities of data; from DNA analysis algorithms, to image processing and movie recommendation algorithms. Most of these systems store the data in very large matrices. In order to perform analysis on the collected data, these big matrices have to be stored in the RAM (random-access memory) of the computing system. But this is a very expensive process since RAM is a scarce computational resource. Ideally, one would like to be able to store most of the data matrices on the memory disk (hard disk drive) while loading only the necessary parts of the …


Data Mining Based Hybridization Of Meta-Raps, Fatemah Al-Duoli, Ghaith Rabadi Jan 2014

Data Mining Based Hybridization Of Meta-Raps, Fatemah Al-Duoli, Ghaith Rabadi

Engineering Management & Systems Engineering Faculty Publications

Though metaheuristics have been frequently employed to improve the performance of data mining algorithms, the opposite is not true. This paper discusses the process of employing a data mining algorithm to improve the performance of a metaheuristic algorithm. The targeted algorithms to be hybridized are the Meta-heuristic for Randomized Priority Search (Meta-RaPS) and an algorithm used to create an Inductive Decision Tree. This hybridization focuses on using a decision tree to perform on-line tuning of the parameters in Meta-RaPS. The process makes use of the information collected during the iterative construction and improvement phases Meta-RaPS performs. The data mining algorithm …


Stability Aware Delaunay Refinement, Bishal Acharya Aug 2013

Stability Aware Delaunay Refinement, Bishal Acharya

UNLV Theses, Dissertations, Professional Papers, and Capstones

Good quality meshes are extensively used for finding approximate solutions for partial differential equations for fluid flow in two dimensional surfaces. We present an overview of existing algorithms for refinement and generation of triangular meshes. We introduce the concept of node stability in the refinement of Delaunay triangulation. We present two algorithms for generating stable refinement of Delaunay triangulation. We also present an experimental investigation of a triangulation refinement algorithm based on the location of the center of gravity and the location of the center of circumcircle. The results show that the center of gravity based refinement is more effective …


Validation Of Weak Form Thermal Analysis Algorithms Supporting Thermal Signature Generation, Elton Lewis Freeman Dec 2012

Validation Of Weak Form Thermal Analysis Algorithms Supporting Thermal Signature Generation, Elton Lewis Freeman

Masters Theses

Extremization of a weak form for the continuum energy conservation principle differential equation naturally implements fluid convection and radiation as flux Robin boundary conditions associated with unsteady heat transfer. Combining a spatial semi-discretization via finite element trial space basis functions with time-accurate integration generates a totally node-based algebraic statement for computing. Closure for gray body radiation is a newly derived node-based radiosity formulation generating piecewise discontinuous solutions, while that for natural-forced-mixed convection heat transfer is extracted from the literature. Algorithm performance, mathematically predicted by asymptotic convergence theory, is subsequently validated with data obtained in 24 hour diurnal field experiments for …


Determining Angular Frequency From A Video With A Generalized Fast Fourier Transform, Lindsay N. Smith Mar 2012

Determining Angular Frequency From A Video With A Generalized Fast Fourier Transform, Lindsay N. Smith

Theses and Dissertations

Suppose we are given a video of a rotating object and suppose we want to determine the rate of rotation solely from the video itself and its known frame rate. In this thesis, we present a new mathematical operator called the Geometric Sum Transform (GST) that can help one determine the angular frequency of the object in question. The GST is a generalization of the discrete Fourier transform (DFT) and as such, the two transforms have much in common. However, whereas the DFT is applied to a sequence of scalars, the GST can be applied to a sequence of vectors. …


Parallel-Sparse Symmetrical/Unsymmetrical Finite Element Domain Decomposition Solver With Multi-Point Constraints For Structural/Acoustic Analysis, Siroj Tungkahotara, Willie R. Watson, Duc T. Nguyen, Subramaniam D. Rajan Jan 2011

Parallel-Sparse Symmetrical/Unsymmetrical Finite Element Domain Decomposition Solver With Multi-Point Constraints For Structural/Acoustic Analysis, Siroj Tungkahotara, Willie R. Watson, Duc T. Nguyen, Subramaniam D. Rajan

Civil & Environmental Engineering Faculty Publications

Details of parallel-sparse Domain Decomposition (DD) with multi-point constraints (MPC) formulation are explained. Major computational components of the DD formulation are identified. Critical roles of parallel (direct) sparse and iterative solvers with MPC are discussed within the framework of DD formulation. Both symmetrical and unsymmetrical system of simultaneous linear equations (SLE) can be handled by the developed DD formulation. For symmetrical SLE, option for imposing MPC equations is also provided.

Large-scale (up to 25 million unknowns involving complex numbers) structural and acoustic Finite Element (FE) analysis are used to evaluate the parallel computational performance of the proposed DD implementation using …


Commuting Smoothed Projectors In Weighted Norms With An Application To Axisymmetric Maxwell Equations, Jay Gopalakrishnan, Minah Oh Jan 2011

Commuting Smoothed Projectors In Weighted Norms With An Application To Axisymmetric Maxwell Equations, Jay Gopalakrishnan, Minah Oh

Mathematics and Statistics Faculty Publications and Presentations

We construct finite element projectors that can be applied to functions with low regularity. These projectors are continuous in a weighted norm arising naturally when modeling devices with axial symmetry. They have important commuting diagram properties needed for finite element analysis. As an application, we use the projectors to prove quasioptimal convergence for the edge finite element approximation of the axisymmetric time-harmonic Maxwell equations on nonsmooth domains. Supplementary numerical investigations on convergence deterioration at high wavenumbers and near Maxwell eigenvalues and are also reported.


Comparative Analysis Of Expected Utility Theory Versus Prospect Theory And Critique Of Their Recent Developments, Sassan Sadeghi Jan 2011

Comparative Analysis Of Expected Utility Theory Versus Prospect Theory And Critique Of Their Recent Developments, Sassan Sadeghi

Theses Digitization Project

This study is an investigation of the decision making theories, their developments, and especially, their applications. After locating the two rivals, the Expected Utility Theory (EUT) and the Prospect Theory (PT), within the general context of decision making situations, it compares their main features and examines the PT extensions.


A Multi-Objective Approach To A Bipartite Assignment Matching Problem Using Weighted Values From Multiple Contraints, Greg S. Jeong Mar 2010

A Multi-Objective Approach To A Bipartite Assignment Matching Problem Using Weighted Values From Multiple Contraints, Greg S. Jeong

Theses and Dissertations

US Air Force recruiters routinely assign new recruits to available jobs every month. The goal is to find the best assignments in an efficient manner. Although this problem is modeled as a bipartite assignment matching problem, it is not new to the field of Operations Research. This research presents a new approach to solve assignment matching problems given multiple side constraints. Using two multi-criteria optimization techniques, lexicographic optimization and the elastic constraint method, the assignment matching algorithm efficiently produces an optimal solution in a fraction of the time currently spent. This approach is demonstrated in assigning new USAF recruits to …


On Graph Isomorphism And The Pagerank Algorithm, Christopher J. Augeri Aug 2008

On Graph Isomorphism And The Pagerank Algorithm, Christopher J. Augeri

Theses and Dissertations

A graph is a key construct for expressing relationships among objects, such as the radio connectivity between nodes contained in an unmanned vehicle swarm. The study of such networks may include ranking nodes based on importance, for example, by applying the PageRank algorithm used in some search engines to order their query responses. The PageRank values correspond to a unique eigenvector typically computed by applying the power method, an iterative technique based on matrix multiplication. The first new result described herein is a lower bound on the execution time of the PageRank algorithm that is derived by applying standard assumptions …


Statistical Removal Of Shadow For Applications To Gait Recognition, Brian D. Hockersmith Mar 2008

Statistical Removal Of Shadow For Applications To Gait Recognition, Brian D. Hockersmith

Theses and Dissertations

The purpose of this thesis is to mathematically remove the shadow of an individual on video. The removal of the shadow will aid in the rendering of higher quality binary silhouettes than previously allowed. These silhouettes will allow researchers studying gait recognition to work with silhouettes unhindered by unrelated data. The thesis begins with the analysis of videos of solid colored backgrounds. A formulation of the effect of shadow on specified colors will aid in the derivation of a hypothesis test to remove an individual’s shadow. Video of an individual walking normally, perpendicular to the camera will be utilized to …


Hardware Algorithm Implementation For Mission Specific Processing, Jason W. Shirley Mar 2008

Hardware Algorithm Implementation For Mission Specific Processing, Jason W. Shirley

Theses and Dissertations

There is a need to expedite the process of designing military hardware to stay ahead of the adversary. The core of this project was to build reusable, synthesizeable libraries to make this a possibility. In order to build these libraries, Matlab® commands and functions, such as Conv2, Round, Floor, Pinv, etc., had to be converted into reusable VHDL modules. These modules make up reusable libraries for the Mission Specific Process (MSP) which will support AFRL/RY. The MSP allows the VLSI design process to be completed in a mere matter of days or months using an FPGA or ASIC design, as …


A New Application Of The Channel Packet Method For Low Energy 1-D Elastic Scattering, Clint M. Zeringue Sep 2006

A New Application Of The Channel Packet Method For Low Energy 1-D Elastic Scattering, Clint M. Zeringue

Theses and Dissertations

An algorithm is presented which uses the channel packet method (CPM) to simulate low-energy, wave-packet propagation and compute S-matrix elements. A four-by-four matrix containing the momentum, expansion coefficients of the reactants and products is introduced to account for initial and final states having both positive and negative momentum. The approach does not consider scattering from one side or the other, rather it considers both incoming and outgoing wave packets from the left and right simultaneously. Therefore, during one simulation all four S-matrix elements, and elements, S+k,-K, S-k, +k, S+k, +k and S-k,-k are computed. …