Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Nonspreading Solutions In Integro-Difference Models With Allee And Overcompensation Effects., Garrett Luther Otto Dec 2017

Nonspreading Solutions In Integro-Difference Models With Allee And Overcompensation Effects., Garrett Luther Otto

Electronic Theses and Dissertations

Previous work in Integro-Difference models have generally considered Allee effects and over-compensation separately, and have either focused on bounded domain problems or asymptotic spreading results. Some recent results by Sullivan et al. (2017 PNAS 114(19), 5053-5058) combining Allee and over-compensation in an Integro-Difference framework have shown chaotic fluctuating spreading speeds. In this thesis, using a tractable parameterized growth function, we analytically demonstrate that when Allee and over-compensation are present solutions which persist but essentially remain in a compact domain exist. We investigate the stability of these solutions numerically. We also numerically demonstrate the existence of such solutions for more general …


Quantifying The Structure Of Misfolded Proteins Using Graph Theory, Walter G. Witt May 2017

Quantifying The Structure Of Misfolded Proteins Using Graph Theory, Walter G. Witt

Electronic Theses and Dissertations

The structure of a protein molecule is highly correlated to its function. Some diseases such as cystic fibrosis are the result of a change in the structure of a protein so that this change interferes or inhibits its function. Often these changes in structure are caused by a misfolding of the protein molecule. To assist computational biologists, there is a database of proteins together with their misfolded versions, called decoys, that can be used to test the accuracy of protein structure prediction algorithms. In our work we use a nested graph model to quantify a selected set of proteins that …


Computational Fluid Dynamics In A Terminal Alveolated Bronchiole Duct With Expanding Walls: Proof-Of-Concept In Openfoam, Jeremy Myers Jan 2017

Computational Fluid Dynamics In A Terminal Alveolated Bronchiole Duct With Expanding Walls: Proof-Of-Concept In Openfoam, Jeremy Myers

Theses and Dissertations

Mathematical Biology has found recent success applying Computational Fluid Dynamics (CFD) to model airflow in the human lung. Detailed modeling of flow patterns in the alveoli, where the oxygen-carbon dioxide gas exchange occurs, has provided data that is useful in treating illnesses and designing drug-delivery systems. Unfortunately, many CFD software packages have high licensing fees that are out of reach for independent researchers. This thesis uses three open-source software packages, Gmsh, OpenFOAM, and ParaView, to design a mesh, create a simulation, and visualize the results of an idealized terminal alveolar sac model. This model successfully demonstrates that OpenFOAM can be …