Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Photoelectrochemical Sensing Based On Zr-Mofs For Homocysteine Detection, Wen-Xia Dong, Guang-Ming Wen, Bin Liu, Zhong-Ping Li Dec 2021

Photoelectrochemical Sensing Based On Zr-Mofs For Homocysteine Detection, Wen-Xia Dong, Guang-Ming Wen, Bin Liu, Zhong-Ping Li

Journal of Electrochemistry

Due to the independent form of the light source and detection system, photoelectrochemical (PEC) sensor has the advantages of low background, high sensitivity and simple operation. So far, PEC systems have been widely used in the fields including the actual detection of metal ions, biological antibodies or antigens in environmental pollutants. When the photosensitive material is irradiated by a light source with an energy being equal to or greater than its band gap, electrons (e-) transition occurs from the valence band to the conduction band, leaving a hole (h+), at the same time, the generated electron-hole pair (e-/h+) separate, and …


Structure Analysis Of Pemfc Cathode Catalyst Layer, Rui-Qing Wang, Sheng Sui Dec 2021

Structure Analysis Of Pemfc Cathode Catalyst Layer, Rui-Qing Wang, Sheng Sui

Journal of Electrochemistry

The sluggish oxygen reduction reaction (ORR) on the cathode of the proton exchange membrane fuel cell (PEMFC) has always been one of the key factors limiting its commercialization. The optimization of the cathode catalytic layer structure plays an important role in improving fuel cell performance and reducing production costs. In this paper, two different catalysts (platinum nanoparticles (Pt-NPs) and platinum nanowires (Pt-NWs)) were prepared by using catalyst coated substrate (CCS) method. By constructing a double-layer catalytic layer structure, we analyzed the effect of different catalytic layer structures by performing a single cell test. The results showed that the dense platinum …


Mathematical Expression And Quantitative Analysis Of Impedance Spectrum On The Interface Of Glassy Carbon Electrode, Lei Cheng, Pu-Xuan Yan, You-Jun Fan, Hua-Hong Zou, Hong Liang Oct 2021

Mathematical Expression And Quantitative Analysis Of Impedance Spectrum On The Interface Of Glassy Carbon Electrode, Lei Cheng, Pu-Xuan Yan, You-Jun Fan, Hua-Hong Zou, Hong Liang

Journal of Electrochemistry

Glassy carbon electrode (GCE) is a common basic electrode for various electrochemical sensors, and the detection properties are determined by its interfacial characteristics. In this paper, we established an equivalent circuit including electrolyte resistance (Rel), charge transport resistance (Rct), diffusion impedance (Rdi, Cdi), electrochemical (oxidation/reduction) reaction impedance (RR, CR), surface adsorption impedance (Rads , Cads), double-layer capacitance (CDL), and derived the mathematical expression for the equivalent circuit. The Rel and CDL are contributed by inactive …


Preparation Of Modified Titanium Based Pbo2 Electrode And Its Rapid Detection Of Cod, Qi Sun, Yan-He Han, Xiao-Lu Fu Oct 2021

Preparation Of Modified Titanium Based Pbo2 Electrode And Its Rapid Detection Of Cod, Qi Sun, Yan-He Han, Xiao-Lu Fu

Journal of Electrochemistry

In the traditional Ti/β-PbO2 electrode, the crystal lattice difference between β-PbO2 and Ti matrix is large, and the prepared electrode is easy to fall off and has a short service life. It needs to be modified in actual use. Based on the advantages of α-PbO2 material and Ag material in terms of adhesion and conductivity, respectively, the above two materials are selected as the intermediate layer of Ti/β-PbO2 electrode to improve electrode performance. In this paper, by preparing Ti/α/β-PbO2 and Ti/Ag/β-PbO2 electrodes …


Fundamentals Of Electrochemical Impedance Spectroscopy For Macrohomogeneous Porous Electrodes, Xiang Li, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jia Wang, Yang Liu, Yu-Feng Zhao, Juan Wang, Jiu-Jun Zhang Oct 2021

Fundamentals Of Electrochemical Impedance Spectroscopy For Macrohomogeneous Porous Electrodes, Xiang Li, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jia Wang, Yang Liu, Yu-Feng Zhao, Juan Wang, Jiu-Jun Zhang

Journal of Electrochemistry

Electrochemical impedance spectroscopy (EIS) can be used to diagnose charge transfer reactions and mass transport in porous electrodes. The charge transfer reactions include interfacial charge accumulation and charge conduction as well as electrochemical reaction. In this paper, the complex phasor method is developed under the macrohomogeneous assumption to build an impedance model of porous electrodes for clarifying several vague expressions in the traditional approaches. The following researches are carried out: (1) Identifying characteristic parameters for the porous electrodes, including electrode electronic conductivity σ1, electrolyte ionic conductivity σ2, interface charge transfer conductivity gct, unit area …


Ohmic Drop Compensation In Electrochemical Measurement, Jia-Qi Chen, Xu-Xu Ye, Ling-Wen Liao, Zhen Wei, Mian-Le Xu, Yan-Xia Chen Jun 2021

Ohmic Drop Compensation In Electrochemical Measurement, Jia-Qi Chen, Xu-Xu Ye, Ling-Wen Liao, Zhen Wei, Mian-Le Xu, Yan-Xia Chen

Journal of Electrochemistry

The solution resistance (Ru) between the working electrode (WE) and the reference electrode (RE) may lead to significant Ohmic drop (iRu) and deviation of actually applied potential at the WE to the desired ones in electrochemical measurement. In the case of high current or large Ru, iRu compensation is imperative. Errors associated with insufficient compensation of theiRu drop may significantly affect the accuracy of data measured by conventional electrochemical methods, which may consequently result in wrong judgment and conclusions. In this article, we discuss important factors which may affect …


Luminol/Sulfamic Acid Electrochemiluminescence And Its Application For Dopamine Detection, Hailemariam Barkae Tesfaye, Ibrahim Halawa Mohamed, Haile Fereja Tadesse, Addisu Kitte Shimeles, Ma Xian-Gui, Chen Ye-Quan, Xu Guo-Bao Apr 2021

Luminol/Sulfamic Acid Electrochemiluminescence And Its Application For Dopamine Detection, Hailemariam Barkae Tesfaye, Ibrahim Halawa Mohamed, Haile Fereja Tadesse, Addisu Kitte Shimeles, Ma Xian-Gui, Chen Ye-Quan, Xu Guo-Bao

Journal of Electrochemistry

Herein, sulfamic acid (SA) was utilized, for the first time, to enhance significantly the luminol electrochemiluminescence (ECL). With the SA concentration increased from 0.1 μmol·L-1 to 500 μmol·L-1 the ECL intensity increased proportionally. The developed luminol/SA ECL system was employed to detect dopamine (DA) based on its prominent quenching effect. The Stern-Volmer equation of Io/I= 1+Ksv[DA] could be applied to express well the quenching mechanism of DA in the luminol/SA ECL system. The calibration plot showed that the increase in the DA concentration from 0.5 to 20 μmol·L-1 decreased linearly the ECL intensity …


Electrochemical Gating Single-Molecule Circuits With Parallel Paths, Jun-Qing Su, Yi-Fan Zhou, Ling Tong, Ya-Hao Wang, Ju-Fang Zheng, Jing-Zhe Chen, Xiao-Shun Zhou Apr 2021

Electrochemical Gating Single-Molecule Circuits With Parallel Paths, Jun-Qing Su, Yi-Fan Zhou, Ling Tong, Ya-Hao Wang, Ju-Fang Zheng, Jing-Zhe Chen, Xiao-Shun Zhou

Journal of Electrochemistry

Electrochemical gating has emerged as a feasible and powerful method to tune single-molecule conductance. Herein, we demonstrate that the electron transport through single-molecule circuits with two benzene rings in parallel could be efficiently gated by electrochemistry. The molecular junctions with two parallel paths are fabricated with Au electrodes by STM break junction (STM-BJ) technique. Their conductance value exhibits a 2.82-fold enhancement by the constructive quantum interference compared to single-molecule junctions with single path for electron tunneling. Furthermore, the conductance of para-benzene based molecule could be electrochemically tuned with a modulation ratio of about 333%·V-1. With the help of DFT calculations, …


Electrochemical Surface-Enhanced Raman Spectroscopic Studies On Nickel Ultramicroelectrode, Li-Wen Wu, Wei Wang, Yi-Fan Huang Apr 2021

Electrochemical Surface-Enhanced Raman Spectroscopic Studies On Nickel Ultramicroelectrode, Li-Wen Wu, Wei Wang, Yi-Fan Huang

Journal of Electrochemistry

Nickel (Ni) electrodes are widely used in electrochemical researches. Understanding electrochemical processes on Ni electrodes through in-situ characterization of adsorbed species on their surfaces is helpful for rational optimization and application of Ni electrochemistry. Microelectrochemical surface-enhanced Raman spectroscopy (μEC-SERS) combines the mass transfer feature of ultramicroelectrode with high-sensitivity characterizations of molecular structures, which is a powerful method for studying Ni electrochemistry on polarization and non-equilibrium conditions. The key point of performing μEC-SERS is to make a SERS-active Ni ultramicroelectrode.
Here, we demonstrate a method of preparing a SERS-active Ni ultramicroelectrode through electrochemical deposition of several atomic layers of …


Combined Applications Of Photocurrent Spectroscopy, Photoluminescence Spectroscopy And Uv-Vis Spectroscopy For Nano-Semiconductor Based Photoelectric Devices, Si-Da Bian, Jian-Zhang Zhou, Zhong-Hua Lin Feb 2021

Combined Applications Of Photocurrent Spectroscopy, Photoluminescence Spectroscopy And Uv-Vis Spectroscopy For Nano-Semiconductor Based Photoelectric Devices, Si-Da Bian, Jian-Zhang Zhou, Zhong-Hua Lin

Journal of Electrochemistry

The electronic structures and properties of nano-semiconductors are quite different from those of bulk semiconductors due to the nano-size effect (such as quantum size effect). Moreover, when the nano-semiconductor materials are deposited onto the substrate to construct a device, their electronic properties are also affected by the substrate or other components, which may lead to different performances of nano-semiconductors based photoelectric devices, and consequently, different corresponding characterization methods are needed. The combination of photocurrent spectroscopy, photoluminescence spectroscopy with UV-Vis absorption spectroscopy can provide a more comprehensive characterization for the electronic properties and photoelectrochemical performances of nano-semiconductors in photoelectric devices. Our …