Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Analytical, Diagnostic and Therapeutic Techniques and Equipment

Series

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 153

Full-Text Articles in Physical Sciences and Mathematics

3d-Printed Microfluidic Devices For Electrochemiluminescence Detection Of Mirna, Oscar Clement May 2024

3d-Printed Microfluidic Devices For Electrochemiluminescence Detection Of Mirna, Oscar Clement

Honors Scholar Theses

This thesis outlines the research conducted over the past two years on the production and application of microfluidic devices (MFDs) in electrochemiluminescent-based bioanalytical assays. The work is categorized into two main projects: designing and manufacturing MFDs and developing electrochemiluminescent (ECL) assays for detecting Alzheimer's disease (AD) associated microRNAs (miRNAs) using CRISPR technology. The process of learning to design MFDs involved acquiring proficiency in computer-aided design (CAD) software, stereolithography (SLA) 3D printing, and iterative design techniques. The development of the ECL-based assay for AD miRNA was a multidisciplinary endeavor, combining elements of inorganic and biological chemistry. Although the research on the …


Ultrasoft Platelet-Like Particles Stop Bleeding In Rodent And Porcine Models Of Trauma, Kimberly Nellenbach, Emily Mihalko, Seema Nandi, Drew W. Koch, Jagathpala Shetty, Leandra Moretti, Jennifer Sollinger, Nina Moiseiwitsch, Ana Sheridan, Sanika Pandit, Maureane Hoffman, Lauren V. Schnabel, L. Andrew Lyon, Thomas H. Barker, Ashley C. Brown Apr 2024

Ultrasoft Platelet-Like Particles Stop Bleeding In Rodent And Porcine Models Of Trauma, Kimberly Nellenbach, Emily Mihalko, Seema Nandi, Drew W. Koch, Jagathpala Shetty, Leandra Moretti, Jennifer Sollinger, Nina Moiseiwitsch, Ana Sheridan, Sanika Pandit, Maureane Hoffman, Lauren V. Schnabel, L. Andrew Lyon, Thomas H. Barker, Ashley C. Brown

Engineering Faculty Articles and Research

Uncontrolled bleeding after trauma represents a substantial clinical problem. The current standard of care to treat bleeding after trauma is transfusion of blood products including platelets; however, donated platelets have a short shelf life, are in limited supply, and carry immunogenicity and contamination risks. Consequently, there is a critical need to develop hemostatic platelet alternatives. To this end, we developed synthetic platelet-like particles (PLPs), formulated by functionalizing highly deformable microgel particles composed of ultralow cross-linked poly (N-isopropylacrylamide) with fibrin-binding ligands. The fibrin-binding ligand was designed to target to wound sites, and the cross-linking of fibrin polymers was designed …


De Novo Drug Design Using Transformer-Based Machine Translation And Reinforcement Learning Of An Adaptive Monte Carlo Tree Search, Dony Ang, Cyril Rakovski, Hagop S. Atamian Jan 2024

De Novo Drug Design Using Transformer-Based Machine Translation And Reinforcement Learning Of An Adaptive Monte Carlo Tree Search, Dony Ang, Cyril Rakovski, Hagop S. Atamian

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The discovery of novel therapeutic compounds through de novo drug design represents a critical challenge in the field of pharmaceutical research. Traditional drug discovery approaches are often resource intensive and time consuming, leading researchers to explore innovative methods that harness the power of deep learning and reinforcement learning techniques. Here, we introduce a novel drug design approach called drugAI that leverages the Encoder–Decoder Transformer architecture in tandem with Reinforcement Learning via a Monte Carlo Tree Search (RL-MCTS) to expedite the process of drug discovery while ensuring the production of valid small molecules with drug-like characteristics and strong binding affinities towards …


Quantification Of Antiviral Drug Tenofovir (Tfv) By Surface-Enhanced Raman Spectroscopy (Sers) Using Cumulative Distribution Functions (Cdfs), Marguerite R. Butler, Jana Hrncirova, Meredith Clark, Sucharita Dutta, John B. Cooper Jan 2024

Quantification Of Antiviral Drug Tenofovir (Tfv) By Surface-Enhanced Raman Spectroscopy (Sers) Using Cumulative Distribution Functions (Cdfs), Marguerite R. Butler, Jana Hrncirova, Meredith Clark, Sucharita Dutta, John B. Cooper

Chemistry & Biochemistry Faculty Publications

Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive spectroscopic technique that generates signal-enhanced fingerprint vibrational spectra of small molecules. However, without rigorous control of SERS substrate active sites, geometry, surface area, or surface functionality, SERS is notoriously irreproducible, complicating the consistent quantitative analysis of small molecules. While evaporatively prepared samples yield significant SERS enhancement resulting in lower detection limits, the distribution of these enhancements along the SERS surface is inherently stochastic. Acquiring spatially resolved SERS spectra of these dried surfaces, we have shown that this enhancement is governed by a power law as a function of analyte concentration. Consequently, by definition, …


Cumulative Distribution Function And Spatially Resolved Surface-Enhanced Raman Spectroscopy For The Quantitative Analysis Of Emtricitabine, Jana Hrncirova, Marguerite R. Butler, Sucharita Dutta, Meredith R. Clark, John B. Cooper Jan 2024

Cumulative Distribution Function And Spatially Resolved Surface-Enhanced Raman Spectroscopy For The Quantitative Analysis Of Emtricitabine, Jana Hrncirova, Marguerite R. Butler, Sucharita Dutta, Meredith R. Clark, John B. Cooper

Chemistry & Biochemistry Faculty Publications

Surface-enhanced Raman spectroscopy (SERS) has exceptional analytical sensitivity and selectivity. However, SERS irreproducibility presents an obstacle when using it for precise quantitative measurements. In this study, colloidal nanoparticles evaporated to dryness are used as a SERS active surface for the detection of the HIV drug emtricitabine (FTC; trade name Emtriva). Despite the irreproducibility of the SERS resulting from the stochastic process of evaporation, using a SERS scanning instrument, the SERS enhancement factors of spatially resolved spectra have a well-defined distribution of signals for a given analyte concentration. This distribution follows a power law function ranging from weak (very abundant signals) …


Machine Learning As A Tool For Early Detection: A Focus On Late-Stage Colorectal Cancer Across Socioeconomic Spectrums, Hadiza Galadima, Rexford Anson-Dwamena, Ashley Johnson, Ghalib Bello, Georges Adunlin, James Blando Jan 2024

Machine Learning As A Tool For Early Detection: A Focus On Late-Stage Colorectal Cancer Across Socioeconomic Spectrums, Hadiza Galadima, Rexford Anson-Dwamena, Ashley Johnson, Ghalib Bello, Georges Adunlin, James Blando

Community & Environmental Health Faculty Publications

Purpose: To assess the efficacy of various machine learning (ML) algorithms in predicting late-stage colorectal cancer (CRC) diagnoses against the backdrop of socio-economic and regional healthcare disparities. Methods: An innovative theoretical framework was developed to integrate individual- and census tract-level social determinants of health (SDOH) with sociodemographic factors. A comparative analysis of the ML models was conducted using key performance metrics such as AUC-ROC to evaluate their predictive accuracy. Spatio-temporal analysis was used to identify disparities in late-stage CRC diagnosis probabilities. Results: Gradient boosting emerged as the superior model, with the top predictors for late-stage CRC diagnosis being anatomic site, …


Predicting The Need For Cardiovascular Surgery: A Comparative Study Of Machine Learning Models, Arman Ghavidel, Pilar Pazos, Rolando Del Aguila Suarez, Alireza Atashi Jan 2024

Predicting The Need For Cardiovascular Surgery: A Comparative Study Of Machine Learning Models, Arman Ghavidel, Pilar Pazos, Rolando Del Aguila Suarez, Alireza Atashi

Engineering Management & Systems Engineering Faculty Publications

This research examines the efficacy of ensemble Machine Learning (ML) models, mainly focusing on Deep Neural Networks (DNNs), in predicting the need for cardiovascular surgery, a critical aspect of clinical decision-making. It addresses key challenges such as class imbalance, which is pivotal in healthcare settings. The research involved a comprehensive comparison and evaluation of the performance of previously published ML methods against a new Deep Learning (DL) model. This comparison utilized a dataset encompassing 50,000 patient records from a large hospital between 2015-2022. The study proposes enhancing the efficacy of these models through feature selection and hyperparameter optimization, employing techniques …


Compton Scattering Of Mammographic Soft X-Ray Beams By Alkali And Transition Metal Salt Filters Produce X-Ray Interference Zones That May Have Treatment Potential For Localized Cancer Lesions, Subhendra N. Sarkar, Eric Lobel, Sabina Rakhmatova, Derbie Desir, Somdat Kissoon, Daler Djuraev, Katie Tam Jan 2024

Compton Scattering Of Mammographic Soft X-Ray Beams By Alkali And Transition Metal Salt Filters Produce X-Ray Interference Zones That May Have Treatment Potential For Localized Cancer Lesions, Subhendra N. Sarkar, Eric Lobel, Sabina Rakhmatova, Derbie Desir, Somdat Kissoon, Daler Djuraev, Katie Tam

Publications and Research

In breast x-ray imaging scattered radiation adds 50% of harmful radiation dose from anisotropic Compton scattering mechanism. We have been working with double layered inorganic salt materials that can induce Compton scattering to the incident mammographic x ray beams (in 20-30 kVp range) with adequate isotropy (angular control). Typically metal nitrates and alkali halide salt layers are shown here to cause low energy radiation interference zones with high and low photon intensities and local flux heterogeneity in terms of flux covariance. Spatial variation of low energy photon flux creates concentrated and sparse radiation zones that may be used to induce …


Raman Spectroscopic Analysis Of Human Serum Samples Of Convalescing Covid-19 Positive Patients, Hugh Byrne, Naomi Jackson, Jaythoon Hassan Dec 2023

Raman Spectroscopic Analysis Of Human Serum Samples Of Convalescing Covid-19 Positive Patients, Hugh Byrne, Naomi Jackson, Jaythoon Hassan

Articles

Rapid screening, detection and monitoring of viral infection is of critical importance, as exemplified by the rapid spread of SARS-CoV-2, leading to the worldwide pandemic of COVID-19. This is equally the case for the stages of patient convalescence as for the initial stages of infection, to understand the medium and long terms effects, as well as the efficacy of therapeutic interventions. Optical spectroscopic techniques potentially offer an alternative to currently employed techniques of screening for the presence, or the response to infection. In this study, the ability of Raman spectroscopy to distinguish between samples of the serum of convalescent COVID-19 …


Additive Effects Of Cyclic Peptide [R4w4] When Added Alongside Azithromycin And Rifampicin Against Mycobacterium Avium Infection, Melissa Kelley, Kayvan Sasaninia, Arbi Abnousian, Ali Badaoui, James Owens, Abrianna Beever, Nala Kachour, Rakesh Kumar Tiwari, Vishwanath Venketaraman Aug 2023

Additive Effects Of Cyclic Peptide [R4w4] When Added Alongside Azithromycin And Rifampicin Against Mycobacterium Avium Infection, Melissa Kelley, Kayvan Sasaninia, Arbi Abnousian, Ali Badaoui, James Owens, Abrianna Beever, Nala Kachour, Rakesh Kumar Tiwari, Vishwanath Venketaraman

Pharmacy Faculty Articles and Research

Mycobacterium avium (M. avium), a type of nontuberculous mycobacteria (NTM), poses a risk for pulmonary infections and disseminated infections in immunocompromised individuals. Conventional treatment consists of a 12-month regimen of the first-line antibiotics rifampicin and azithromycin. However, the treatment duration and low antibiotic tolerability present challenges in the treatment of M. avium infection. Furthermore, the emergence of multidrug-resistant mycobacterium strains prompts a need for novel treatments against M. avium infection. This study aims to test the efficacy of a novel antimicrobial peptide, cyclic [R4W4], alongside the first-line antibiotics azithromycin and rifampicin in reducing M. avium survival. Colony-forming unit (CFU) …


Artificial Intelligence In Neuroradiology: A Scoping Review Of Some Ethical Challenges, Pegah Khosravi, Mark Schweitzer May 2023

Artificial Intelligence In Neuroradiology: A Scoping Review Of Some Ethical Challenges, Pegah Khosravi, Mark Schweitzer

Publications and Research

Artificial intelligence (AI) has great potential to increase accuracy and efficiency in many aspects of neuroradiology. It provides substantial opportunities for insights into brain pathophysiology, developing models to determine treatment decisions, and improving current prognostication as well as diagnostic algorithms. Concurrently, the autonomous use of AI models introduces ethical challenges regarding the scope of informed consent, risks associated with data privacy and protection, potential database biases, as well as responsibility and liability that might potentially arise. In this manuscript, we will first provide a brief overview of AI methods used in neuroradiology and segue into key methodological and ethical challenges. …


Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian) Mar 2023

Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian)

Library Philosophy and Practice (e-journal)

Abstract

Purpose: The purpose of this research paper is to explore ChatGPT’s potential as an innovative designer tool for the future development of artificial intelligence. Specifically, this conceptual investigation aims to analyze ChatGPT’s capabilities as a tool for designing and developing near about human intelligent systems for futuristic used and developed in the field of Artificial Intelligence (AI). Also with the helps of this paper, researchers are analyzed the strengths and weaknesses of ChatGPT as a tool, and identify possible areas for improvement in its development and implementation. This investigation focused on the various features and functions of ChatGPT that …


Identifying The Serious Clinical Outcomes Of Adverse Reactions To Drugs By A Multi-Task Deep Learning Framework, Haochen Zhao, Peng Ni, Qichang Zhao, Xiao Liang, Di Ai, Shannon Erhardt, Jun Wang, Yaohang Li, Jiianxin Wang Jan 2023

Identifying The Serious Clinical Outcomes Of Adverse Reactions To Drugs By A Multi-Task Deep Learning Framework, Haochen Zhao, Peng Ni, Qichang Zhao, Xiao Liang, Di Ai, Shannon Erhardt, Jun Wang, Yaohang Li, Jiianxin Wang

Computer Science Faculty Publications

Adverse Drug Reactions (ADRs) have a direct impact on human health. As continuous pharmacovigilance and drug monitoring prove to be costly and time-consuming, computational methods have emerged as promising alternatives. However, most existing computational methods primarily focus on predicting whether or not the drug is associated with an adverse reaction and do not consider the core issue of drug benefit-risk assessment-whether the treatment outcome is serious when adverse drug reactions occur. To this end, we categorize serious clinical outcomes caused by adverse reactions to drugs into seven distinct classes and present a deep learning framework, so-called GCAP, for predicting the …


Medical Diagnosis Via Refined Neutrosophic Fuzzy Logic: Detection Of Illness Using Neutrosophic Sets, K. Hemabala, B. Srinivasa Kumar, Florentin Smarandache Jan 2023

Medical Diagnosis Via Refined Neutrosophic Fuzzy Logic: Detection Of Illness Using Neutrosophic Sets, K. Hemabala, B. Srinivasa Kumar, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

The objective of the paper is to implement and validate diagnosis in the medical field via refined neutrosophic fuzzy logic (RNFL). As such, we have proposed a Max-Min composition (MMC) method in RNFL. This method deals with the diagnosis under certain constraints like uncertainty and indeterminacy. Further, we have considered the diagnosis problems to validate the sensitivity analysis of the novel multi attribute decision-making technique. Finally, we gave the graphical representations and compared the obtained results with other existing measures in refined neutrosophic fuzzy sets.


Msdrp: A Deep Learning Model Based On Multisource Data For Predicting Drug Response, Haochen Zhao, Xiaoyu Zhang, Qichang Zhao, Yaohang Li, Jianxin Wang Jan 2023

Msdrp: A Deep Learning Model Based On Multisource Data For Predicting Drug Response, Haochen Zhao, Xiaoyu Zhang, Qichang Zhao, Yaohang Li, Jianxin Wang

Computer Science Faculty Publications

Motivation: Cancer heterogeneity drastically affects cancer therapeutic outcomes. Predicting drug response in vitro is expected to help formulate personalized therapy regimens. In recent years, several computational models based on machine learning and deep learning have been proposed to predict drug response in vitro. However, most of these methods capture drug features based on a single drug description (e.g. drug structure), without considering the relationships between drugs and biological entities (e.g. target, diseases, and side effects). Moreover, most of these methods collect features separately for drugs and cell lines but fail to consider the pairwise interactions between drugs and cell …


Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette Jan 2023

Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette

Electrical & Computer Engineering Faculty Publications

Real-time fall detection using a wearable sensor remains a challenging problem due to high gait variability. Furthermore, finding the type of sensor to use and the optimal location of the sensors are also essential factors for real-time fall-detection systems. This work presents real-time fall-detection methods using deep learning models. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. First, we developed and compared different data-segmentation techniques for sliding windows. Next, we implemented various techniques to balance the datasets because collecting fall datasets in the real-time setting has …


Opioid Use Disorder Prediction Using Machine Learning Of Fmri Data, A. Temtam, Liangsuo Ma, F. Gerard Moeller, M. S. Sadique, K. M. Iftekharuddin, Khan M. Iftekharuddin (Ed.), Weijie Chen (Ed.) Jan 2023

Opioid Use Disorder Prediction Using Machine Learning Of Fmri Data, A. Temtam, Liangsuo Ma, F. Gerard Moeller, M. S. Sadique, K. M. Iftekharuddin, Khan M. Iftekharuddin (Ed.), Weijie Chen (Ed.)

Electrical & Computer Engineering Faculty Publications

According to the Centers for Disease Control and Prevention (CDC) more than 932,000 people in the US have died since 1999 from a drug overdose. Just about 75% of drug overdose deaths in 2020 involved Opioid, which suggests that the US is in an Opioid overdose epidemic. Identifying individuals likely to develop Opioid use disorder (OUD) can help public health in planning effective prevention, intervention, drug overdose and recovery policies. Further, a better understanding of prediction of overdose leading to the neurobiology of OUD may lead to new therapeutics. In recent years, very limited work has been done using statistical …


Prediction Of Rapid Early Progression And Survival Risk With Pre-Radiation Mri In Who Grade 4 Glioma Patients, Walia Farzana, Mustafa M. Basree, Norou Diawara, Zeina Shboul, Sagel Dubey, Marie M. Lockheart, Mohamed Hamza, Joshua D. Palmer, Khan Iftekharuddin Jan 2023

Prediction Of Rapid Early Progression And Survival Risk With Pre-Radiation Mri In Who Grade 4 Glioma Patients, Walia Farzana, Mustafa M. Basree, Norou Diawara, Zeina Shboul, Sagel Dubey, Marie M. Lockheart, Mohamed Hamza, Joshua D. Palmer, Khan Iftekharuddin

Electrical & Computer Engineering Faculty Publications

Rapid early progression (REP) has been defined as increased nodular enhancement at the border of the resection cavity, the appearance of new lesions outside the resection cavity, or increased enhancement of the residual disease after surgery and before radiation. Patients with REP have worse survival compared to patients without REP (non-REP). Therefore, a reliable method for differentiating REP from non-REP is hypothesized to assist in personlized treatment planning. A potential approach is to use the radiomics and fractal texture features extracted from brain tumors to characterize morphological and physiological properties. We propose a random sampling-based ensemble classification model. The proposed …


A High-Accuracy Detection System: Based On Transfer Learning For Apical Lesions On Periapical Radiograph, Yueh Chuo, Wen-Ming Lin, Tsung-Yi Chen, Mei-Ling Chan, Yu-Sung Chang, Yan-Ru Lin, Yuan-Jin Lin, Yu-Han Shao, Chiung-An Chen, Patricia Angela R. Abu Dec 2022

A High-Accuracy Detection System: Based On Transfer Learning For Apical Lesions On Periapical Radiograph, Yueh Chuo, Wen-Ming Lin, Tsung-Yi Chen, Mei-Ling Chan, Yu-Sung Chang, Yan-Ru Lin, Yuan-Jin Lin, Yu-Han Shao, Chiung-An Chen, Patricia Angela R. Abu

Department of Information Systems & Computer Science Faculty Publications

Apical Lesions, one of the most common oral diseases, can be effectively detected in daily dental examinations by a periapical radiograph (PA). In the current popular endodontic treatment, most dentists spend a lot of time manually marking the lesion area. In order to reduce the burden on dentists, this paper proposes a convolutional neural network (CNN)-based regional analysis model for spical lesions for periapical radiographs. In this study, the database was provided by dentists with more than three years of practical experience, meeting the criteria for clinical practical application. The contributions of this work are (1) an advanced adaptive threshold …


A Human Oral Fluid Assay For D- And L- Isomer Detection Of Amphetamine And Methamphetamine Using Liquid-Liquid Extraction, Brian Robbins, Rob E. Carpenter, Mary Long, Jacob Perry Dec 2022

A Human Oral Fluid Assay For D- And L- Isomer Detection Of Amphetamine And Methamphetamine Using Liquid-Liquid Extraction, Brian Robbins, Rob E. Carpenter, Mary Long, Jacob Perry

Human Resource Development Faculty Publications and Presentations

Medical providers are increasingly confronted with clinical decision-making that involves (meth)amphetamines. And clinical laboratories need a sensitive, efficient assay for routine assessment of D- and L-isomers to determine the probable source of these potentially illicit analytes. This paper presents a validated method of D- and L-isomer detection in human oral fluid from an extract used for determination of a large oral fluid assay (63 analytes) on an older AB SCIEX 4000 instrument. Taken from the positive extract, D- and L-analytes were added. The method for extraction included addition of internal standard and a 2-step …


Artificial Intelligence And The Situational Rationality Of Diagnosis: Human Problem-Solving And The Artifacts Of Health And Medicine, Michael W. Raphael Oct 2022

Artificial Intelligence And The Situational Rationality Of Diagnosis: Human Problem-Solving And The Artifacts Of Health And Medicine, Michael W. Raphael

Publications and Research

What is the problem-solving capacity of artificial intelligence (AI) for health and medicine? This paper draws out the cognitive sociological context of diagnostic problem-solving for medical sociology regarding the limits of automation for decision-based medical tasks. Specifically, it presents a practical way of evaluating the artificiality of symptoms and signs in medical encounters, with an emphasis on the visualization of the problem-solving process in doctor-patient relationships. In doing so, the paper details the logical differences underlying diagnostic task performance between man and machine problem-solving: its principle of rationality, the priorities of its means of adaptation to abstraction, and the effects …


Assessing The Reidentification Risks Posed By Deep Learning Algorithms Applied To Ecg Data, Arin Ghazarian, Jianwei Zheng, Daniele Struppa, Cyril Rakovski Jun 2022

Assessing The Reidentification Risks Posed By Deep Learning Algorithms Applied To Ecg Data, Arin Ghazarian, Jianwei Zheng, Daniele Struppa, Cyril Rakovski

Mathematics, Physics, and Computer Science Faculty Articles and Research

ECG (Electrocardiogram) data analysis is one of the most widely used and important tools in cardiology diagnostics. In recent years the development of advanced deep learning techniques and GPU hardware have made it possible to train neural network models that attain exceptionally high levels of accuracy in complex tasks such as heart disease diagnoses and treatments. We investigate the use of ECGs as biometrics in human identification systems by implementing state-of-the-art deep learning models. We train convolutional neural network models on approximately 81k patients from the US, Germany and China. Currently, this is the largest research project on ECG identification. …


The Short-Term Effects Of Fine Airborne Particulate Matter And Climate On Covid-19 Disease Dynamics, El Hussain Shamsa, Kezhong Zhang Jun 2022

The Short-Term Effects Of Fine Airborne Particulate Matter And Climate On Covid-19 Disease Dynamics, El Hussain Shamsa, Kezhong Zhang

Medical Student Research Symposium

Background: Despite more than 60% of the United States population being fully vaccinated, COVID-19 cases continue to spike in a temporal pattern. These patterns in COVID-19 incidence and mortality may be linked to short-term changes in environmental factors.

Methods: Nationwide, county-wise measurements for COVID-19 cases and deaths, fine-airborne particulate matter (PM2.5), and maximum temperature were obtained from March 20, 2020 to March 20, 2021. Multivariate Linear Regression was used to analyze the association between environmental factors and COVID-19 incidence and mortality rates in each season. Negative Binomial Regression was used to analyze daily fluctuations of COVID-19 cases …


Foundations Of Plasmas For Medical Applications, T. Von Woedtke, Mounir Laroussi, M. Gherardi May 2022

Foundations Of Plasmas For Medical Applications, T. Von Woedtke, Mounir Laroussi, M. Gherardi

Electrical & Computer Engineering Faculty Publications

Plasma medicine refers to the application of nonequilibrium plasmas at approximately body temperature, for therapeutic purposes. Nonequilibrium plasmas are weakly ionized gases which contain charged and neutral species and electric fields, and emit radiation, particularly in the visible and ultraviolet range. Medically-relevant cold atmospheric pressure plasma (CAP) sources and devices are usually dielectric barrier discharges and nonequilibrium atmospheric pressure plasma jets. Plasma diagnostic methods and modelling approaches are used to characterize the densities and fluxes of active plasma species and their interaction with surrounding matter. In addition to the direct application of plasma onto living tissue, the treatment of liquids …


Estimating The Analytical Performance Of Raman Spectroscopy For Quantification Of Active Ingredients In Human Stratum Corneum, Hichem Kichou, Emilie Munnier, Yuri Dancik, Kamilia Kemel, Hugh Byrne, Ali Tfayli, Dominique Bertrand, Martin Soucé, Igor Chourpa, Franck Bonnier Apr 2022

Estimating The Analytical Performance Of Raman Spectroscopy For Quantification Of Active Ingredients In Human Stratum Corneum, Hichem Kichou, Emilie Munnier, Yuri Dancik, Kamilia Kemel, Hugh Byrne, Ali Tfayli, Dominique Bertrand, Martin Soucé, Igor Chourpa, Franck Bonnier

Articles

Confocal Raman microscopy (CRM) has become a versatile technique that can be applied routinely to monitor skin penetration of active molecules. In the present study, CRM coupled to multivariate analysis (namely PLSR—partial least squares regression) is used for the quantitative measurement of an active ingredient (AI) applied to isolated (ex vivo) human stratum corneum (SC), using systematically varied doses of resorcinol, as model compound, and the performance is quantified according to key figures of merit defined by regulatory bodies (ICH, FDA, and EMA). A methodology is thus demonstrated to establish the limit of detection (LOD), precision, accuracy, sensitivity (SEN), and …


Using Machine Learning To Recognize Chronic Rhinosinusitis, Irene Liu '23 Apr 2022

Using Machine Learning To Recognize Chronic Rhinosinusitis, Irene Liu '23

Student Publications & Research

Chronic Rhinosinusitis (CRS) is a nasal disease characterized by the inflammation of the mucosa and paranasal sinuses with a duration of at least 12 consecutive weeks. So, to diagnose CRS, one needs to keep a record of their symptoms for ~12 weeks before they are recommended to get a tomography which will allow physicians to classify them as a patient with CRS or without. This is a timely and costly process; thus, machine learning should be used to speed the process up. Since patients with CRS have more obstructed noses, the sound produced should be different than an individual without …


Three-Heartbeat Multilead Ecg Recognition Method For Arrhythmia Classification, Liang-Hung Wang, Yan-Ting Yu, Wei Liu, Lu Xu, Chao-Xin Xie, Tao Yang, I-Chun Kuo, Xin-Kang Wang, Jie Gao, Patricia Angela R. Abu Apr 2022

Three-Heartbeat Multilead Ecg Recognition Method For Arrhythmia Classification, Liang-Hung Wang, Yan-Ting Yu, Wei Liu, Lu Xu, Chao-Xin Xie, Tao Yang, I-Chun Kuo, Xin-Kang Wang, Jie Gao, Patricia Angela R. Abu

Department of Information Systems & Computer Science Faculty Publications

Electrocardiogram (ECG) is the primary basis for the diagnosis of cardiovascular diseases. However, the amount of ECG data of patients makes manual interpretation time-consuming and onerous. Therefore, the intelligent ECG recognition technology is an important means to decrease the shortage of medical resources. This study proposes a novel classification method for arrhythmia that uses for the very first time a three-heartbeat multi-lead (THML) ECG data in which each fragment contains three complete heartbeat processes of multiple ECG leads. The THML ECG data pre-processing method is formulated which makes use of the MIT-BIH arrhythmia database as training samples. Four arrhythmia classification …


A High Precision Machine Learning-Enabled System For Predicting Idiopathic Ventricular Arrhythmia Origins, Jianwei Zheng, Guohua Fu, Daniele Struppa, Islam Abudayyeh, Tahmeed Contractor, Kyle Anderson, Huimin Chu, Cyril Rakovski Mar 2022

A High Precision Machine Learning-Enabled System For Predicting Idiopathic Ventricular Arrhythmia Origins, Jianwei Zheng, Guohua Fu, Daniele Struppa, Islam Abudayyeh, Tahmeed Contractor, Kyle Anderson, Huimin Chu, Cyril Rakovski

Mathematics, Physics, and Computer Science Faculty Articles and Research

Background: Radiofrequency catheter ablation (CA) is an efficient antiarrhythmic treatment with a class I indication for idiopathic ventricular arrhythmia (IVA), only when drugs are ineffective or have unacceptable side effects. The accurate prediction of the origins of IVA can significantly increase the operation success rate, reduce operation duration and decrease the risk of complications. The present work proposes an artificial intelligence-enabled ECG analysis algorithm to estimate possible origins of idiopathic ventricular arrhythmia at a clinical-grade level accuracy.

Method: A total of 18,612 ECG recordings extracted from 545 patients who underwent successful CA to treat IVA were proportionally sampled into training, …


Use Of Machine Learning Approaches And Statistical Techniques To Adjust For Nonadherence In Randomized Clinical Trials., Andrew G Chapple Mar 2022

Use Of Machine Learning Approaches And Statistical Techniques To Adjust For Nonadherence In Randomized Clinical Trials., Andrew G Chapple

School of Public Health Faculty Publications

No abstract provided.


Applications Of Unsupervised Machine Learning In Autism Spectrum Disorder Research: A Review, Chelsea Parlett-Pelleriti, Elizabeth Stevens, Dennis R. Dixon, Erik J. Linstead Jan 2022

Applications Of Unsupervised Machine Learning In Autism Spectrum Disorder Research: A Review, Chelsea Parlett-Pelleriti, Elizabeth Stevens, Dennis R. Dixon, Erik J. Linstead

Engineering Faculty Articles and Research

Large amounts of autism spectrum disorder (ASD) data is created through hospitals, therapy centers, and mobile applications; however, much of this rich data does not have pre-existing classes or labels. Large amounts of data—both genetic and behavioral—that are collected as part of scientific studies or a part of treatment can provide a deeper, more nuanced insight into both diagnosis and treatment of ASD. This paper reviews 43 papers using unsupervised machine learning in ASD, including k-means clustering, hierarchical clustering, model-based clustering, and self-organizing maps. The aim of this review is to provide a survey of the current uses of …