Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Analytical, Diagnostic and Therapeutic Techniques and Equipment

PDF

Computer Science Faculty Publications

Series

Machine learning

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Msdrp: A Deep Learning Model Based On Multisource Data For Predicting Drug Response, Haochen Zhao, Xiaoyu Zhang, Qichang Zhao, Yaohang Li, Jianxin Wang Jan 2023

Msdrp: A Deep Learning Model Based On Multisource Data For Predicting Drug Response, Haochen Zhao, Xiaoyu Zhang, Qichang Zhao, Yaohang Li, Jianxin Wang

Computer Science Faculty Publications

Motivation: Cancer heterogeneity drastically affects cancer therapeutic outcomes. Predicting drug response in vitro is expected to help formulate personalized therapy regimens. In recent years, several computational models based on machine learning and deep learning have been proposed to predict drug response in vitro. However, most of these methods capture drug features based on a single drug description (e.g. drug structure), without considering the relationships between drugs and biological entities (e.g. target, diseases, and side effects). Moreover, most of these methods collect features separately for drugs and cell lines but fail to consider the pairwise interactions between drugs and cell …


Adaptive Physics-Based Non-Rigid Registration For Immersive Image-Guided Neuronavigation Systems, Fotis Drakopoulos, Christos Tsolakis, Angelos Angelopoulos, Yixun Liu, Chengjun Yao, Kyriaki Rafailia Kavazidi, Nikolaos Foroglou, Andrey Fedorov, Sarah Frisken, Ron Kikinis, Alexandra Golby, Nikos Chrisochoides Jan 2021

Adaptive Physics-Based Non-Rigid Registration For Immersive Image-Guided Neuronavigation Systems, Fotis Drakopoulos, Christos Tsolakis, Angelos Angelopoulos, Yixun Liu, Chengjun Yao, Kyriaki Rafailia Kavazidi, Nikolaos Foroglou, Andrey Fedorov, Sarah Frisken, Ron Kikinis, Alexandra Golby, Nikos Chrisochoides

Computer Science Faculty Publications

Objective: In image-guided neurosurgery, co-registered preoperative anatomical, functional, and diffusion tensor imaging can be used to facilitate a safe resection of brain tumors in eloquent areas of the brain. However, the brain deforms during surgery, particularly in the presence of tumor resection. Non-Rigid Registration (NRR) of the preoperative image data can be used to create a registered image that captures the deformation in the intraoperative image while maintaining the quality of the preoperative image. Using clinical data, this paper reports the results of a comparison of the accuracy and performance among several non-rigid registration methods for handling brain deformation. A …