Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

R Program For Estimation Of Group Efficiency And Finding Its Gradient. Stochastic Data Envelopment Analysis With A Perfect Object Approach, Alexander Vaninsky Jul 2018

R Program For Estimation Of Group Efficiency And Finding Its Gradient. Stochastic Data Envelopment Analysis With A Perfect Object Approach, Alexander Vaninsky

Publications and Research

The data presented here are related to the research article “Energy-environmental efficiency and optimal restructuring of the global economy” (Vaninsky, 2018) [1]. This article describes how the world economy can be restructured to become more energy-environmental efficient, while still increasing its growth potential. It demonstrates how available energy-environmental and economic information may support policy-making decisions on the atmosphere preservation and climate change prevention. This Data article presents a computer program in R language together with examples of input and output files that serve as a means of implementation of the novel approach suggested in publication[1]. The computer program utilizes stochastic …


On Some Geometry Of Graphs, Zachary S. Mcguirk May 2018

On Some Geometry Of Graphs, Zachary S. Mcguirk

Dissertations, Theses, and Capstone Projects

In this thesis we study the intrinsic geometry of graphs via the constants that appear in discretized partial differential equations associated to those graphs. By studying the behavior of a discretized version of Bochner's inequality for smooth manifolds at the cone point for a cone over the set of vertices of a graph, a lower bound for the internal energy of the underlying graph is obtained. This gives a new lower bound for the size of the first non-trivial eigenvalue of the graph Laplacian in terms of the curvature constant that appears at the cone point and the size of …


Geometry And Analysis Of Some Euler-Arnold Equations, Jae Min Lee May 2018

Geometry And Analysis Of Some Euler-Arnold Equations, Jae Min Lee

Dissertations, Theses, and Capstone Projects

In 1966, Arnold showed that the Euler equation for an ideal fluid can arise as the geodesic flow on the group of volume preserving diffeomorphisms with respect to the right invariant kinetic energy metric. This geometric interpretation was rigorously established by Ebin and Marsden in 1970 using infinite dimensional Riemannian geometry and Sobolev space techniques. Many other nonlinear evolution PDEs in mathematical physics turned out to fit in this universal approach, and this opened a vast research on the geometry and analysis of the Euler-Arnold equations, i.e., geodesic equations on a Lie group endowed with one-sided invariant metrics. In this …


The Advection-Diffusion Equation And The Enhanced Dissipation Effect For Flows Generated By Hamiltonians, Michael Kumaresan May 2018

The Advection-Diffusion Equation And The Enhanced Dissipation Effect For Flows Generated By Hamiltonians, Michael Kumaresan

Dissertations, Theses, and Capstone Projects

We study the Cauchy problem for the advection-diffusion equation when the diffusive parameter is vanishingly small. We consider two cases - when the underlying flow is a shear flow, and when the underlying flow is generated by a Hamiltonian. For the former, we examine the problem on a bounded domain in two spatial variables with Dirichlet boundary conditions. After quantizing the system via the Fourier transform in the first spatial variable, we establish the enhanced-dissipation effect for each mode. For the latter, we allow for non-degenerate critical points and represent the orbits by points on a Reeb graph, with vertices …


Infinitely Many Solutions To Asymmetric, Polyharmonic Dirichlet Problems, Edger Sterjo Feb 2018

Infinitely Many Solutions To Asymmetric, Polyharmonic Dirichlet Problems, Edger Sterjo

Dissertations, Theses, and Capstone Projects

In this dissertation we prove new results on the existence of infinitely many solutions to nonlinear partial differential equations that are perturbed from symmetry. Our main theorems focus on polyharmonic Dirichlet problems with exponential nonlinearities, and are now published in Topol. Methods Nonlinear Anal. Vol. 50, No.1, (2017), 27-63. In chapter 1 we give an introduction to the problem, its history, and the perturbation argument itself. In chapter 2 we prove the variational principle of Bolle on the behavior of critical values under perturbation, and the variational principle of Tanaka on the existence of critical points of large augmented Morse …