Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Agriculture

2015

Bioenergy

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Engineering, Nutrient Removal, And Feedstock Conversion Evaluations Of Four Corn Stover Harvest Scenarios, Reed L. Hoskinson, Douglas L. Karlen, Stuart J. Birrell, Corey W. Radtke, W. W. Wilhelm Dec 2015

Engineering, Nutrient Removal, And Feedstock Conversion Evaluations Of Four Corn Stover Harvest Scenarios, Reed L. Hoskinson, Douglas L. Karlen, Stuart J. Birrell, Corey W. Radtke, W. W. Wilhelm

Douglas L Karlen

Crop residue has been identified as a near-term source of biomass for renewable fuel, heat, power, chemicals and other bio-materials. A prototype one-pass harvest system was used to collect residue samples from a corn (Zea mays L.) field near Ames, IA. Four harvest scenarios (low cut, high-cut top, high-cut bottom, and normal cut) were evaluated and are expressed as collected stover harvest indices (CSHI). High-cut top and high-cut bottom samples were obtained from the same plot in separate operations. Chemical composition, dilute acid pretreatment response, ethanol conversion yield and efficiency, and thermochemical conversion for each scenario were determined. Mean grain …


Development Of Sustainable Corn Stover Harvest Strategies For Cellulosic Ethanol Production, Stuart J. Birrell, Douglas L. Karlen, Adam Wirt Dec 2015

Development Of Sustainable Corn Stover Harvest Strategies For Cellulosic Ethanol Production, Stuart J. Birrell, Douglas L. Karlen, Adam Wirt

Douglas L Karlen

To prepare for a 2014 launch of commercial scale cellulosic ethanol production from corn/maize (Zea mays L.) stover, POET-DSM near Emmetsburg, IA has been working with farmers, researchers, and equipment dealers through “Project Liberty” on harvest, transportation, and storage logistics of corn stover for the past several years. Our objective was to evaluate seven stover harvest strategies within a 50-ha (125 acres) site on very deep, moderately well to poorly drained Mollisols, developed in calcareous glacial till. The treatments included the following: conventional grain harvest (no stover harvest), grain plus a second-pass rake and bale stover harvest, and single-pass …