Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Mathematical Modeling: Finite Element Analysis And Computations Arising In Fluid Dynamics And Biological Applications, Jorge Reyes May 2023

Mathematical Modeling: Finite Element Analysis And Computations Arising In Fluid Dynamics And Biological Applications, Jorge Reyes

UNLV Theses, Dissertations, Professional Papers, and Capstones

It is often the case when attempting to capture real word phenomena that the resulting mathematical model is too difficult and even not feasible to be solved analytically. As a result, a computational approach is required and there exists many different methods to numerically solve models described by systems of partial differential equations. The Finite Element Method is one of them and it was pursued herein.This dissertation focuses on the finite element analysis and corresponding numerical computations of several different models. The first part consists of a study on two different fluid flow models: the main governing model of fluid …


Viability Of Energy And Fuel Sources For Interstellar Travel; Design And Feasibility Of The Construction Of Manned Interstellar Space Shuttles, Lukas Mittelman May 2022

Viability Of Energy And Fuel Sources For Interstellar Travel; Design And Feasibility Of The Construction Of Manned Interstellar Space Shuttles, Lukas Mittelman

UNLV Theses, Dissertations, Professional Papers, and Capstones

The importance of proving the viability of interstellar transport and addressing its potential hazards and pitfalls is immense. If we do not look toward the future and examine what could be waiting for us, we are doing our children, our children’s children, and so on, a disservice. Here we must attempt to lay the groundwork for our future scientists, engineers, and adventurers. Asking and answering questions like, which propulsion and energy systems must we incorporate to send us through the cosmos? Will we utilize technologies known today, such as fossil fuel rockets, fission or fusion rockets, and antimatter drives (pion …


Plasma Aerodynamics: Experimental Quantification Of The Lift Force Generated On An Airfoil Using Plasma Actuation To Estimate Power Requirements In Small Uav Applications, Getachew Ashenafi May 2021

Plasma Aerodynamics: Experimental Quantification Of The Lift Force Generated On An Airfoil Using Plasma Actuation To Estimate Power Requirements In Small Uav Applications, Getachew Ashenafi

UNLV Theses, Dissertations, Professional Papers, and Capstones

This research addressed the amount of electric power required to induce specific changes in lift force using a NACA 2127 airfoil with a chord length of ~28 mm, connected to a micro load cell, in a wind tunnel of 103 square centimeter cross-section. A DBD plasma actuator supplied by a ZVS driven high voltage pulsed DC circuit, operating at a frequency of 17.4 kHz, was utilized for voltages of up to 5000 V. Two configurations of electrode gapping were compared to determine the efficient use of power. The configuration with a gap of ~1 mm between the upstream and downstream …


Numerical Analysis And Fluid Flow Modeling Of Incompressible Navier-Stokes Equations, Tahj Hill May 2019

Numerical Analysis And Fluid Flow Modeling Of Incompressible Navier-Stokes Equations, Tahj Hill

UNLV Theses, Dissertations, Professional Papers, and Capstones

The Navier-Stokes equations (NSE) are an essential set of partial differential equations for governing the motion of fluids. In this paper, we will study the NSE for an incompressible flow, one which density ρ = ρ0 is constant.

First, we will present the derivation of the NSE and discuss solutions and boundary conditions for the equations. We will then discuss the Reynolds number, a dimensionless number that is important in the observations of fluid flow patterns. We will study the NSE at various Reynolds numbers, and use the Reynolds number to write the NSE in a nondimensional form.

We will …


Assessing Simulated Transmissivity In Numerical Flow Models Of Complex Hydrogeology, Afan Tarar May 2019

Assessing Simulated Transmissivity In Numerical Flow Models Of Complex Hydrogeology, Afan Tarar

UNLV Theses, Dissertations, Professional Papers, and Capstones

Accurately extracting a meaningful transmissivity, a target value within one order of magnitude of field estimates, in numerical models poses a significant challenge when modeling complex groundwater systems. Aquifer transmissivity is directly proportional to the aquifer thickness and the estimated aquifer hydraulic conductivity. In complex geologic conditions (especially in fractured systems) with multiple heterogeneous and anisotropic hydrogeologic units, transmissivity can vary over several orders of magnitude.

To extract a meaningful value of transmissivity from a numerical model, a simple five-layer MODFLOW model was constructed. Each layer in the model was assigned a fixed hydraulic conductivity and thickness. The model simulates …


Mitigation Of Moving Shocks In An Expanding Duct, Veraun Chipman Dec 2014

Mitigation Of Moving Shocks In An Expanding Duct, Veraun Chipman

UNLV Theses, Dissertations, Professional Papers, and Capstones

Inviscid flow theory governs the bulk motion of a gas at some distance away from the walls (i.e. outside the boundary layer). That is to say, there are no viscous forces in the bulk flow, which is modeled using the Euler equations. The Euler equations are simply the Navier-Stokes equations with zero viscosity terms. An ideal inviscid fluid, when brought into contact with a surface or wall, would naturally slip right past it since the fluid has no viscosity. In real life, however, a thin boundary layer forms between the wall or surface and the bulk flow. Shock wave boundary …


Mathematical Equations And System Identification Models For A Portable Pneumatic Bladder System Designed To Reduce Human Exposure To Whole Body Shock And Vibration, Ezzat Aziz Ayyad Aug 2014

Mathematical Equations And System Identification Models For A Portable Pneumatic Bladder System Designed To Reduce Human Exposure To Whole Body Shock And Vibration, Ezzat Aziz Ayyad

UNLV Theses, Dissertations, Professional Papers, and Capstones

A mathematical representation is sought to model the behavior of a portable pneumatic foam bladder designed to mitigate the effects of human exposure to shock and whole body random vibration. Fluid Dynamics principles are used to derive the analytic differential equations used for the physical equations Model. Additionally, combination of Wiener and Hammerstein block oriented representation techniques have been selected to create system identification (SID) block oriented models. A number of algorithms have been iterated to obtain numerical solutions for the system of equations which was found to be coupled and non-linear, with no analytic closed form solution. The purpose …


Turn Constrained Path Planning Problems, Victor M. Roman May 2009

Turn Constrained Path Planning Problems, Victor M. Roman

UNLV Theses, Dissertations, Professional Papers, and Capstones

We consider the problem of constructing multiple disjoint paths connecting a source point s to a target point t in a geometric graph. We require that the paths do not have any sharp turn angles. We present a review of turn constrained path planning algorithms and also algorithms for constructing disjoint paths. We then combine these techniques and present an O(nlogn) time algorithm for constructing a pair of edge disjoint turn constrained paths connecting two nodes in a planar geometric graph. We also consider the development of a turn constrained shortest path map in the presence of …