Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Physical Sciences and Mathematics

Towards Reduced-Order Model Accelerated Optimization For Aerodynamic Design, Andrew L. Kaminsky Dec 2022

Towards Reduced-Order Model Accelerated Optimization For Aerodynamic Design, Andrew L. Kaminsky

Doctoral Dissertations

The adoption of mathematically formal simulation-based optimization approaches within aerodynamic design depends upon a delicate balance of affordability and accessibility. Techniques are needed to accelerate the simulation-based optimization process, but they must remain approachable enough for the implementation time to not eliminate the cost savings or act as a barrier to adoption.

This dissertation introduces a reduced-order model technique for accelerating fixed-point iterative solvers (e.g. such as those employed to solve primal equations, sensitivity equations, design equations, and their combination). The reduced-order model-based acceleration technique collects snapshots of early iteration (pre-convergent) solutions and residuals and then uses them to project …


Moving Polygon Methods For Incompressible Fluid Dynamics, Chris Chartrand Mar 2022

Moving Polygon Methods For Incompressible Fluid Dynamics, Chris Chartrand

Doctoral Dissertations

Hybrid particle-mesh numerical approaches are proposed to solve incompressible fluid flows. The methods discussed in this work consist of a collection of particles each wrapped in their own polygon mesh cell, which then move through the domain as the flow evolves. Variables such as pressure, velocity, mass, and momentum are located either on the mesh or on the particles themselves, depending on the specific algorithm described, and each will be shown to have its own advantages and disadvantages. This work explores what is required to obtain local conservation of mass, momentum, and convergence for the velocity and pressure in a …


Theoretical And Experimental Application Of Neural Networks In Spaceflight Control Systems, Pavel Galchenko Jan 2022

Theoretical And Experimental Application Of Neural Networks In Spaceflight Control Systems, Pavel Galchenko

Doctoral Dissertations

“Spaceflight systems can enable advanced mission concepts that can help expand our understanding of the universe. To achieve the objectives of these missions, spaceflight systems typically leverage guidance and control systems to maintain some desired path and/or orientation of their scientific instrumentation. A deep understanding of the natural dynamics of the environment in which these spaceflight systems operate is required to design control systems capable of achieving the desired scientific objectives. However, mitigating strategies are critically important when these dynamics are unknown or poorly understood and/or modelled. This research introduces two neural network methodologies to control the translation and rotation …


Reveal Wind Loading Of Tornadoes And Hurricanes On Civil Structures Towards Hazard-Resistant Design, Ryan Honerkamp Jan 2021

Reveal Wind Loading Of Tornadoes And Hurricanes On Civil Structures Towards Hazard-Resistant Design, Ryan Honerkamp

Doctoral Dissertations

"Extreme winds impacting civil structures lead to death and destruction in all regions of the world. Specifically, tornadoes and hurricanes impact communities with severe devastation. On average, 1200 tornadoes occur in the United States every year. Tornadoes occur predominantly in the Central and Southeastern United States, accounting for an annual $1 billion in economic losses, 1500 injuries, and 90 deaths. The Joplin, MO Tornado in 2011 killed 161 people, injured more than 1000, destroyed more than 8000 structures, and caused $2.8 billion of property loss. Hurricanes occur predominantly on the United States East coast regions and along the coast of …


Magnetic Control Of Transport Of Particles And Droplets In Low Reynolds Number Shear Flows, Jie Zhang Jan 2020

Magnetic Control Of Transport Of Particles And Droplets In Low Reynolds Number Shear Flows, Jie Zhang

Doctoral Dissertations

“Magnetic particles and droplets have been used in a wide range applications including biomedicine, biological analysis and chemical reaction. The manipulation of magnetic microparticles or microdroplets in microscale fluid environments is one of the most critical processes in the systems and platforms based on microfluidic technology. The conventional methods are based on magnetic forces to manipulate magnetic particles or droplets in a viscous fluid.

In contrast to conventional magnetic separation method, several recent experimental and theoretical studies have demonstrated a different way to manipulate magnetic non-spherical particles by using a uniform magnetic field in the microchannel. However, the fundamental mechanism …


Characterization Of A Green Electric Solid Propellant For Electric Propulsion, Matthew Scott Glascock Jan 2019

Characterization Of A Green Electric Solid Propellant For Electric Propulsion, Matthew Scott Glascock

Doctoral Dissertations

"Electric solid propellants are advanced solid chemical rocket propellants that can be controlled (ignited, throttled and extinguished) through the application and removal of an electric current. These propellants are also being considered for use in ablative pulsed plasma thruster and multimode systems. In this work, the behavior and performance of a novel green electric solid propellant operating in an electrothermal ablation-fed pulsed plasma thruster was investigated. Using an inverted pendulum micro-Newton thrust stand, the impulse bit and specific impulse of the device using the electric solid propellant were measured for short-duration and long-duration runs to end-of-life, at energy levels of …


Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel Nov 2017

Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel

Doctoral Dissertations

A uniform dispersion of reactants is necessary to achieve a complete reaction involving multi-components, especially for the crosslinking of rigid high-performance materials. In these reactions, miscibility is crucial for curing efficiency. This miscibility is typically enhanced by adding a third component, a plasticizer. For the reaction of the highly crystalline crosslinking agent hexamethylenetetramine (HMTA) with a strongly hydrogen-bonded phenol formaldehyde resin, furfural has been traditionally used as the plasticizer. However, the reason for its effectiveness is not clear. In this doctoral thesis work, miscibility and crosslinking efficiency of plasticizers in phenolic curing reactions are studied by thermal analysis and spectroscopic …


Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion May 2017

Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion

Doctoral Dissertations

Uranium enrichment finds a direct and indispensable function in both peaceful and nonpeaceful nuclear applications. Today, over 99% of enriched uranium is produced by gas centrifuge technology. With the international dissemination of the Zippe archetypal design in 1960 followed by the widespread illicit centrifuge trafficking efforts of the A.Q. Khan network, traditional barriers to enrichment technologies are no longer as effective as they once were. Consequently, gas centrifuge technology is now regarded as a high-priority nuclear proliferation threat, and the international nonproliferation community seeks new avenues to effectively and efficiently respond to this emergent threat.

Effective response first requires an …


Lattice Boltzmann Methods For Wind Energy Analysis, Stephen Lloyd Wood Aug 2016

Lattice Boltzmann Methods For Wind Energy Analysis, Stephen Lloyd Wood

Doctoral Dissertations

An estimate of the United States wind potential conducted in 2011 found that the energy available at an altitude of 80 meters is approximately triple the wind energy available 50 meters above ground. In 2012, 43% of all new electricity generation installed in the U.S. (13.1 GW) came from wind power. The majority of this power, 79%, comes from large utility scale turbines that are being manufactured at unprecedented sizes. Existing wind plants operate with a capacity factor of only approximately 30%. Measurements have shown that the turbulent wake of a turbine persists for many rotor diameters, inducing increased vibration …


Measurements Of Methyl Radicals And Temperatures By Using Coherent Microwave Rayleigh Scattering From Resonance Enhanced Multiphoton Ionization, Yue Wu Aug 2015

Measurements Of Methyl Radicals And Temperatures By Using Coherent Microwave Rayleigh Scattering From Resonance Enhanced Multiphoton Ionization, Yue Wu

Doctoral Dissertations

This thesis includes two main parts: (I) The CH3[methyl radical] detection in methane/air flames and (II) the rotational temperature measurement of O2[molecular oxygen] in a variety of environments by using coherent microwave Rayleigh scattering from resonance enhanced multiphoton ionization (Radar REMPI).

In first the part, from Chapter I to Chapter III, the methyl radical detection and quantitative measurements have been conducted in hydrocarbon flame with one-dimensional and two-dimensional spatial-resolved concentration distribution. Due to the proximity of the argon resonance state (4+1 REMPI by 332.5 nm) with the CH3 state (2+1 REMPI by 333.6 nm), in …


Quantum Inspired Algorithms For Learning And Control Of Stochastic Systems, Karthikeyan Rajagopal Jan 2015

Quantum Inspired Algorithms For Learning And Control Of Stochastic Systems, Karthikeyan Rajagopal

Doctoral Dissertations

"Motivated by the limitations of the current reinforcement learning and optimal control techniques, this dissertation proposes quantum theory inspired algorithms for learning and control of both single-agent and multi-agent stochastic systems.

A common problem encountered in traditional reinforcement learning techniques is the exploration-exploitation trade-off. To address the above issue an action selection procedure inspired by a quantum search algorithm called Grover's iteration is developed. This procedure does not require an explicit design parameter to specify the relative frequency of explorative/exploitative actions.

The second part of this dissertation extends the powerful adaptive critic design methodology to solve finite horizon stochastic optimal …


Investigation Of Robust Optimization And Evidence Theory With Stochastic Expansions For Aerospace Applications Under Mixed Uncertainty, Harsheel R. Shah Jan 2015

Investigation Of Robust Optimization And Evidence Theory With Stochastic Expansions For Aerospace Applications Under Mixed Uncertainty, Harsheel R. Shah

Doctoral Dissertations

One of the primary objectives of this research is to develop a method to model and propagate mixed (aleatory and epistemic) uncertainty in aerospace simulations using DSTE. In order to avoid excessive computational cost associated with large scale applications and the evaluation of Dempster Shafer structures, stochastic expansions are implemented for efficient UQ. The mixed UQ with DSTE approach was demonstrated on an analytical example and high fidelity computational fluid dynamics (CFD) study of transonic flow over a RAE 2822 airfoil.

Another objective is to devise a DSTE based performance assessment framework through the use of quantification of margins and …


Pulsed Inductive Plasma Studies By Spectroscopy And Internal Probe Methods, Warner C. Meeks Jan 2015

Pulsed Inductive Plasma Studies By Spectroscopy And Internal Probe Methods, Warner C. Meeks

Doctoral Dissertations

The broad effort of the Missouri Plasmoid Experiment is to elucidate the energy conversion processes in a pulsed inductive discharge due to the presence of plasma. The test article is a 440 to 490 kHz theta-pinch (or solenoidal) geometry coil with a stored energy of around 80 joules. In this work experimental hydrogen, helium, argon and xenon data at back-fill pressures of 10 to 100 mTorr (1.3 to 133.3 Pa) are obtained and interpreted. Spectral and internal probe studies were performed on MPX Mk.I and Mk.II devices, respectively. IR spectra were acquired in the Mk.I device for argon and xenon. …


A Viscous Flow Analog To Prandtl’S Optimized Lifting Line Theory Utilizing Rotating Biquadratic Bodies Of Revolution, Mark Nathaniel Callender Dec 2013

A Viscous Flow Analog To Prandtl’S Optimized Lifting Line Theory Utilizing Rotating Biquadratic Bodies Of Revolution, Mark Nathaniel Callender

Doctoral Dissertations

Prandtl’s lifting line theory expanded the Kutta-Joukowski theorem to calculate the lift and induced drag of finite wings. The circulation distribution about a real wing was represented by a superposition of infinitesimal vortex filaments. From this theory, the optimum distribution of circulation was determined to be elliptical. A consequence of this theory led to the prediction that the elliptical chord distribution on a real fixed wing would provide the elliptical circulation distribution. The author applied the same line of reasoning to lift-producing rotating cylinders in order to determine the cylindrical geometry that would theoretically produce an elliptical circulation distribution. The …


Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson Aug 2013

Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson

Doctoral Dissertations

Ideal and resistive magnetohydrodynamics (MHD) have long served as the incumbent framework for modeling plasmas of engineering interest. However, new applications, such as hypersonic flight and propulsion, plasma propulsion, plasma instability in engineering devices, charge separation effects and electromagnetic wave interaction effects may demand a higher-fidelity physical model. For these cases, the two-fluid plasma model or its limiting case of a single bulk fluid, which results in a single-fluid coupled system of the Navier-Stokes and Maxwell equations, is necessary and permits a deeper physical study than the MHD framework. At present, major challenges are imposed on solving these physical models …


Modeling And Control For Heave Dynamics Of A Flexible Wing Micro Aerial Vehicle Distributed Parameter System, Lisa M. Kuhn Jul 2011

Modeling And Control For Heave Dynamics Of A Flexible Wing Micro Aerial Vehicle Distributed Parameter System, Lisa M. Kuhn

Doctoral Dissertations

In recent years, much research has been motivated by the idea of biologically-inspired flight. It is a conjecture of the United States Air Force that incorporating characteristics of biological flight into air vehicles will significantly improve the maneuverability and performance of modern aircraft. Although there are studies which involve the aerodynamics, structural dynamics, modeling, and control of flexible wing micro aerial vehicles (MAVs), issues of control and vehicular modeling as a whole are largely unexplored. Modeling with such dynamics lends itself to systems of partial differential equations (PDEs) with nonlinearities, and limited control theory is available for such systems.

In …


Theoretical Models For Wall Injected Duct Flows, Tony Saad May 2010

Theoretical Models For Wall Injected Duct Flows, Tony Saad

Doctoral Dissertations

This dissertation is concerned with the mathematical modeling of the flow in a porous cylinder with a focus on applications to solid rocket motors. After discussing the historical development and major contributions to the understanding of wall injected flows, we present an inviscid rotational model for solid and hybrid rockets with arbitrary headwall injection. Then, we address the problem of pressure integration and find that for a given divergence free velocity field, unless the vorticity transport equation is identically satisfied, one cannot find an analytic expression for the pressure by direct integration of the Navier-Stokes equations. This is followed by …


Multi -Mission Attitude Determination System For Balloon Flight, Liping Mo Jan 2001

Multi -Mission Attitude Determination System For Balloon Flight, Liping Mo

Doctoral Dissertations

MADS (Multi-mission Attitude Determination System) is a new software package used to determine the attitude of instruments on a high-altitude balloon employed for scientific experiments. There is no existing system for the automated determination of the attitude of instruments in balloon experiments, so we have developed MADS to do the data analysis for balloon experiments to find the location of astrophysical sources such as gamma-ray or x-ray sources.

The two areas that required most work were modeling star trackers and modeling the motion of the balloon. Star trackers are used on satellites, but are far too expensive and sophisticated to …