Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas May 2024

A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas

Physics Undergraduate Honors Theses

While perfluorosulfonic acid (PFSA) membranes have primarily been used in fuel cells due to their chemical, thermal, and mechanical stability, one PFSA, Nafion, boasts two unique characteristics: a broad glass transition (~55 °C to 130 °C) and a temperature-persistent electrostatic network. The combination of these two characteristics endows Nafion with exceptional shape memory properties – the ability of a material to morph and transform into pre-programmed shapes when exposed to an external stimulus – with enhanced permanent shape memorization, and a potentially near-infinite number of temporary shape memorization. This study focused on expanding the base of knowledge surrounding Nafion’s shape …


A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas May 2024

A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas

Mechanical Engineering Undergraduate Honors Theses

While perfluorosulfonic acid (PFSA) membranes have primarily been used in fuel cells due to their chemical, thermal, and mechanical stability, one PFSA, Nafion, boasts two unique characteristics: a broad glass transition (~55 °C to 130 °C) and a temperature-persistent electrostatic network. The combination of these two characteristics endows Nafion with exceptional shape memory properties – the ability of a material to morph and transform into pre-programmed shapes when exposed to an external stimulus – with enhanced permanent shape memorization, and a potentially near-infinite number of temporary shape memorization. This study focused on expanding the base of knowledge surrounding Nafion’s shape …


Scheduling, Complexity, And Solution Methods For Space Robot On-Orbit Servicing, Susan E. Sorenson Aug 2022

Scheduling, Complexity, And Solution Methods For Space Robot On-Orbit Servicing, Susan E. Sorenson

Graduate Theses and Dissertations

This research proposes problems, models, and solutions for the scheduling of space robot on-orbit servicing. We present the Multi-Orbit Routing and Scheduling of Refuellable On-Orbit Servicing Space Robots problem which considers on-orbit servicing across multiple orbits with moving tasks and moving refuelling depots. We formulate a mixed integer linear program model to optimize the routing and scheduling of robot servicers to accomplish on-orbit servicing tasks. We develop and demonstrate flexible algorithms for the creation of the model parameters and associated data sets. Our first algorithm creates the network arcs using orbital mechanics. We have also created a novel way to …


Scheduling Allocation And Inventory Replenishment Problems Under Uncertainty: Applications In Managing Electric Vehicle And Drone Battery Swap Stations, Amin Asadi Jan 2021

Scheduling Allocation And Inventory Replenishment Problems Under Uncertainty: Applications In Managing Electric Vehicle And Drone Battery Swap Stations, Amin Asadi

Graduate Theses and Dissertations

In this dissertation, motivated by electric vehicle (EV) and drone application growth, we propose novel optimization problems and solution techniques for managing the operations at EV and drone battery swap stations. In Chapter 2, we introduce a novel class of stochastic scheduling allocation and inventory replenishment problems (SAIRP), which determines the recharging, discharging, and replacement decisions at a swap station over time to maximize the expected total profit. We use Markov Decision Process (MDP) to model SAIRPs facing uncertain demands, varying costs, and battery degradation. Considering battery degradation is crucial as it relaxes the assumption that charging/discharging batteries do not …


Design Of Orbital Maneuvers With Aeroassisted Cubesatellites, Stephanie Clark May 2012

Design Of Orbital Maneuvers With Aeroassisted Cubesatellites, Stephanie Clark

Graduate Theses and Dissertations

Recent advances within the field of cube satellite technology has allowed for the possible development of a maneuver that utilizes a satellite's Low Earth Orbit (LEO) and increased atmospheric density to effectively use lift and drag to implement a noncoplanar orbital maneuver. Noncoplanar maneuvers typically require large quantities of propellant due to the large delta-v that is required. However, similar maneuvers using perturbing forces require little or no propellant to create the delta-v required. This research reported here studied on the effects of lift on orbital changes, those of noncoplanar types in particular, for small satellites without orbital maneuvering thrusters. …


Multiuav2 Agent Swarming For Distributed Atr Simulation, Kyle White May 2008

Multiuav2 Agent Swarming For Distributed Atr Simulation, Kyle White

Computer Science and Computer Engineering Undergraduate Honors Theses

Traditional automatic target recognition (ATR) is performed by unmanned aerial vehicles (UAVs) depending on a central control tower to provide the high level organization of the system. The UAVs fly through a region of interest to identify targets and relay all communication through a central control tower. The centralized approach to ATR has limited fault-tolerance, scalability with regards to the number of UAVs, and susceptibility to malicious attacks on the central tower [2]. A swarm-driven alternative [1] is extended with a communication control scheme to address fault-tolerance and scalability while utilizing the higher onboard processing power now available for UAVs …