Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

Embry-Riddle Aeronautical University

Articles 1 - 30 of 86

Full-Text Articles in Physical Sciences and Mathematics

Machine Learning-Based Gps Jamming And Spoofing Detection, Alberto Squatrito Apr 2024

Machine Learning-Based Gps Jamming And Spoofing Detection, Alberto Squatrito

Doctoral Dissertations and Master's Theses

The increasing reliance on Global Positioning System (GPS) technology across various sectors has exposed vulnerabilities to malicious attacks, particularly GPS jamming and spoofing. This thesis presents an analysis into detection and mitigation strategies for enhancing the resilience of GPS receivers against jamming and spoofing attacks. The research entails the development of a simulated GPS signal and a receiver model to accurately decode and extract information from simulated GPS signals. The study implements the generation of jammed and spoofed signals to emulate potential threats faced by GPS receivers in practical settings. The core innovation lies in the integration of machine learning …


Online Aircraft System Identification Using A Novel Parameter Informed Reinforcement Learning Method, Nathan Schaff Oct 2023

Online Aircraft System Identification Using A Novel Parameter Informed Reinforcement Learning Method, Nathan Schaff

Doctoral Dissertations and Master's Theses

This thesis presents the development and analysis of a novel method for training reinforcement learning neural networks for online aircraft system identification of multiple similar linear systems, such as all fixed wing aircraft. This approach, termed Parameter Informed Reinforcement Learning (PIRL), dictates that reinforcement learning neural networks should be trained using input and output trajectory/history data as is convention; however, the PIRL method also includes any known and relevant aircraft parameters, such as airspeed, altitude, center of gravity location and/or others. Through this, the PIRL Agent is better suited to identify novel/test-set aircraft.

First, the PIRL method is applied to …


Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. Mccann Oct 2023

Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. Mccann

Doctoral Dissertations and Master's Theses

Rigid body motion requires formulations where rotational and translational motion are accounted for appropriately. Two Lie groups, the special orthogonal group SO(3) and the space of quaternions H, are commonly used to represent attitude. When considering rigid body pose, that is spacecraft position and attitude, the special Euclidean group SE(3) and the space of dual quaternions DH are frequently utilized. All these groups are Lie groups and Riemannian manifolds, and these identifications have profound implications for dynamics and controls. The trajectory optimization and optimal control problem on Riemannian manifolds presents significant opportunities for theoretical development. Riemannian optimization is an attractive …


A Simulation Of The Impacts Of Climate Change On Civil Aircraft Takeoff Performance, Thomas D. Pellegrin Apr 2023

A Simulation Of The Impacts Of Climate Change On Civil Aircraft Takeoff Performance, Thomas D. Pellegrin

Doctoral Dissertations and Master's Theses

Climate change affects the near-surface environmental conditions that prevail at airports worldwide. Among these, air density and headwind speed are major determinants of takeoff performance, and their sensitivity to global warming carries potential operational and economic implications for the commercial air transport industry. Previous archival and prospective research observed a weakening in headwind strength and predicted an increase in near-surface temperatures, respectively, resulting in an increase in takeoff distances and weight restrictions. The main purpose of the present study was to update and generalize the extant prospective research using a more representative sample of worldwide airports, a wider range of …


A Bidirectional Deep Lstm Machine Learning Method For Flight Delay Modelling And Analysis, Desmond B. Bisandu, Irene Moulitsas Jan 2023

A Bidirectional Deep Lstm Machine Learning Method For Flight Delay Modelling And Analysis, Desmond B. Bisandu, Irene Moulitsas

National Training Aircraft Symposium (NTAS)

Flight delays can be prevented by providing a reference point from an accurate prediction model because predicting flight delays is a problem with a specific space. Only a few algorithms consider predicted classes' mutual correlation during flight delay classification or prediction modelling tasks. None of these existing methods works for all scenarios. Therefore, the need to investigate the performance of more models in solving the problem of flight delay is vast and rapidly increasing. This paper presents the development and evaluation of LSTM and BiLSTM models by comparing them for a flight delay prediction. The LSTM does the feature extraction …


Alternatives To Reducing Aviation Fuel-Burn With Technology: Fully Electric Autonomous Taxibot, Denzil Neo Jan 2023

Alternatives To Reducing Aviation Fuel-Burn With Technology: Fully Electric Autonomous Taxibot, Denzil Neo

Student Works

Aircraft taxiing operations in the aerodrome were identified to consume the most jet fuel apart from the cruise phase of the flight. This was also well supported by various research associating taxi operations at large, congested airports, with high jet fuel consumption, high carbon emissions, and noise pollution. Existing literature recognised the potential to address the environmental issues of aerodrome taxi operations by operating External or Onboard Aircraft Ground Propulsion Systems (AGPS). Designed to power aircraft with sources other than their main engines, external Aircraft Ground Power Systems (AGPS) have shown the potential to significantly cut jet fuel consumption and …


Accuracy Assessment Of The Ebee Using Rtk And Ppk Corrections Methods As A Function Of Distance To A Gnss Base Station, Joseph Cerreta, David Thirtyacre, Peter Miller, Scott S. Burgess, William J. Austin Jan 2023

Accuracy Assessment Of The Ebee Using Rtk And Ppk Corrections Methods As A Function Of Distance To A Gnss Base Station, Joseph Cerreta, David Thirtyacre, Peter Miller, Scott S. Burgess, William J. Austin

International Journal of Aviation, Aeronautics, and Aerospace

The use of unmanned aircraft systems to collect data for photogrammetry models has grown significantly in recent years. The accuracy of a photogrammetric model can depend on image georeferencing. The distance from a reference base station can affect the accuracy of the results. Positioning corrections data relies on precise timing measurements of satellite signals. The signals travel through the Earth's atmosphere, which introduces errors due to ionospheric and tropospheric delays. The aim of this research was to examine the eBee X and its global GNSS accuracy by comparing the RTK and PPK methods at different base station distances in photogrammetry …


Stochastic Optimization To Reduce Aircraft Taxi-In Time At Igia, New Delhi, Rajib Das, Saileswar Ghosh, Rajendra Desai, Pijus Kanti Bhuin, Stuti Agarwal Jan 2023

Stochastic Optimization To Reduce Aircraft Taxi-In Time At Igia, New Delhi, Rajib Das, Saileswar Ghosh, Rajendra Desai, Pijus Kanti Bhuin, Stuti Agarwal

International Journal of Aviation, Aeronautics, and Aerospace

Since there is an uncertainty in the arrival times of flights, pre-scheduled allocation of runways and stands and the subsequent first-come-first-served treatment results in a sub-optimal allocation of runways and stands, this is the prime reason for the unusual delays in taxi-in times at IGIA, New Delhi.

We simulated the arrival pattern of aircraft and utilized stochastic optimization to arrive at the best runway-stands allocation for a day. Optimization is done using a GRG Non-Linear algorithm in the Frontline Systems Analytic Solver platform. We applied this model to eight representative scenarios of two different days. Our results show that without …


A Deep Bilstm Machine Learning Method For Flight Delay Prediction Classification, Desmond B. Bisandu Phd, Irene Moulitsas Phd Jan 2023

A Deep Bilstm Machine Learning Method For Flight Delay Prediction Classification, Desmond B. Bisandu Phd, Irene Moulitsas Phd

Journal of Aviation/Aerospace Education & Research

This paper proposes a classification approach for flight delays using Bidirectional Long Short-Term Memory (BiLSTM) and Long Short-Term Memory (LSTM) models. Flight delays are a major issue in the airline industry, causing inconvenience to passengers and financial losses to airlines. The BiLSTM and LSTM models, powerful deep learning techniques, have shown promising results in a classification task. In this study, we collected a dataset from the United States (US) Bureau of Transportation Statistics (BTS) of flight on-time performance information and used it to train and test the BiLSTM and LSTM models. We set three criteria for selecting highly important features …


Manufacturability And Analysis Of Topologically Optimized Continuous Fiber Reinforced Composites, Jesus A. Ferrand Nov 2022

Manufacturability And Analysis Of Topologically Optimized Continuous Fiber Reinforced Composites, Jesus A. Ferrand

Doctoral Dissertations and Master's Theses

Researchers are unlocking the potential of Continuous Fiber Reinforced Composites for producing components with greater strength-to-weight ratios than state of the art metal alloys and unidirectional composites. The key is the emerging technology of topology optimization and advances in additive manufacturing. Topology optimization can fine tune component geometry and fiber placement all while satisfying stress constraints. However, the technology cannot yet robustly guarantee manufacturability. For this reason, substantial post-processing of an optimized design consisting of manual fiber replacement and subsequent Finite Element Analysis (FEA) is still required.

To automate this post-processing in two dimensions, two (2) algorithms were developed. The …


Machine Learning To Predict Warhead Fragmentation In-Flight Behavior From Static Data, Katharine Larsen Oct 2022

Machine Learning To Predict Warhead Fragmentation In-Flight Behavior From Static Data, Katharine Larsen

Doctoral Dissertations and Master's Theses

Accurate characterization of fragment fly-out properties from high-speed warhead detonations is essential for estimation of collateral damage and lethality for a given weapon. Real warhead dynamic detonation tests are rare, costly, and often unrealizable with current technology, leaving fragmentation experiments limited to static arena tests and numerical simulations. Stereoscopic imaging techniques can now provide static arena tests with time-dependent tracks of individual fragments, each with characteristics such as fragment IDs and their respective position vector. Simulation methods can account for the dynamic case but can exclude relevant dynamics experienced in real-life warhead detonations. This research leverages machine learning methodologies to …


A Data Driven Modeling Approach For Store Distributed Load And Trajectory Prediction, Nicholas Peters Oct 2022

A Data Driven Modeling Approach For Store Distributed Load And Trajectory Prediction, Nicholas Peters

Doctoral Dissertations and Master's Theses

The task of achieving successful store separation from aircraft and spacecraft has historically been and continues to be, a critical issue for the aerospace industry. Whether it be from store-on-store wake interactions, store-parent body interactions or free stream turbulence, a failed case of store separation poses a serious risk to aircraft operators. Cases of failed store separation do not simply imply missing an intended target, but also bring the risk of collision with, and destruction of, the parent body vehicle. Given this risk, numerous well-tested procedures have been developed to help analyze store separation within the safe confines of wind …


Rocket Measurements Of Electron Energy Spectra From Earth’S Photoelectron Production Layer, Glyn A. Collinson, Alex Glocer, Dennis Chornay, Robert Mitchell, Rob Pfaff, Tim Cameron, Nasa Goddard Space Flight Center, Rudy A. Frahm, Traci Rosnack, Chris Pirner, Ted Gass, Jim Clemmons, Aroh Barjatya, Steven Martin, Hassanali Akbari, Shantanab Debchoudhury, Rachel Conway, Francis Eparvier, Eftyhia Zesta, Nikolaos Paschalidis Aug 2022

Rocket Measurements Of Electron Energy Spectra From Earth’S Photoelectron Production Layer, Glyn A. Collinson, Alex Glocer, Dennis Chornay, Robert Mitchell, Rob Pfaff, Tim Cameron, Nasa Goddard Space Flight Center, Rudy A. Frahm, Traci Rosnack, Chris Pirner, Ted Gass, Jim Clemmons, Aroh Barjatya, Steven Martin, Hassanali Akbari, Shantanab Debchoudhury, Rachel Conway, Francis Eparvier, Eftyhia Zesta, Nikolaos Paschalidis

Publications

Photoelectrons are crucial to atmospheric physics. They heat the atmosphere, strengthen 28 planetary ambipolar electric fields, and enhance the outflow of ions to space. However, 29 there exist only a handful of measurements of their energy spectrum near the peak of 30 photoproduction. We present calibrated energy spectra of pristine photoelectrons at their 31 source by a prototype Dual Electrostatic Analyzer (DESA) instrument flown on July 11 32 2021 aboard the Dynamo-2 sounding rocket (NASA № 36.357). Photopeaks arising from 33 30.4nm He-II spectral line were observed throughout the flight above 120km. DESA also 34 successfully resolved the rarely observed …


Vertical Take-Off And Landing Control Via Dual-Quaternions And Sliding Mode, Joshua Sonderegger Apr 2022

Vertical Take-Off And Landing Control Via Dual-Quaternions And Sliding Mode, Joshua Sonderegger

Doctoral Dissertations and Master's Theses

The landing and reusability of space vehicles is one of the driving forces into renewed interest in space utilization. For missions to planetary surfaces, this soft landing has been most commonly accomplished with parachutes. However, in spite of their simplicity, they are susceptible to parachute drift. This parachute drift makes it very difficult to predict where the vehicle will land, especially in a dense and windy atmosphere such as Earth. Instead, recent focus has been put into developing a powered landing through gimbaled thrust. This gimbaled thrust output is dependent on robust path planning and controls algorithms. Being able to …


Reduced-Order Dynamic Modeling And Robust Nonlinear Control Of Fluid Flow Velocity Fields, Anu Kossery Jayaprakash, William Mackunis, Vladimir Golubev, Oksana Stalnov Dec 2021

Reduced-Order Dynamic Modeling And Robust Nonlinear Control Of Fluid Flow Velocity Fields, Anu Kossery Jayaprakash, William Mackunis, Vladimir Golubev, Oksana Stalnov

Publications

A robust nonlinear control method is developed for fluid flow velocity tracking, which formally addresses the inherent challenges in practical implementation of closed-loop active flow control systems. A key challenge being addressed here is flow control design to compensate for model parameter variations that can arise from actuator perturbations. The control design is based on a detailed reduced-order model of the actuated flow dynamics, which is rigorously derived to incorporate the inherent time-varying uncertainty in the both the model parameters and the actuator dynamics. To the best of the authors’ knowledge, this is the first robust nonlinear closed-loop active flow …


Adaptive-Optimal Control Of Spacecraft Near Asteroids, Madhur Tiwari Jun 2021

Adaptive-Optimal Control Of Spacecraft Near Asteroids, Madhur Tiwari

Doctoral Dissertations and Master's Theses

Spacecraft dynamics and control in the vicinity of an asteroid is a challenging and exciting problem. Currently, trajectory tracking near asteroid requires extensive knowledge about the asteroid and constant human intervention to successfully plan and execute proximity operation. This work aims to reduce human dependency of these missions from a guidance and controls perspective. In this work, adaptive control and model predictive control are implemented to generating and tracking obstacle avoidance trajectories in asteroid’s vicinity.

Specifically, direct adaptive control derived from simple adaptive control is designed with e modification to track user-generated trajectories in the presence of unknown system and …


A Model For Inhalation Of Infectious Aerosol Contaminants In An Aircraft Passenger Cabin, Bert A. Silich Jan 2021

A Model For Inhalation Of Infectious Aerosol Contaminants In An Aircraft Passenger Cabin, Bert A. Silich

International Journal of Aviation, Aeronautics, and Aerospace

Aerosol contamination of an aircraft cabin by infectious passengers is a concern of passengers, aircrew and the aviation industry. This may be especially important during a pandemic, such as COVID-19, where the full extent of aerosol transmission is not well understood. A statistical method to determine the number of infectious passengers on board along with a mathematical model estimating the contaminant concentration of aerosols in the cabin and the number of inhaled infectious particles by passengers is presented. An example is used to demonstrated how the results can be estimated during normal operations and emergency conditions with malfunctions of the …


A Mathematical Analysis Of The Wind Triangle Problem And An Inquiry Of True Airspeed Calculations In Supersonic Flight, Leonard T. Huang, Lisa I. Cummings Jan 2021

A Mathematical Analysis Of The Wind Triangle Problem And An Inquiry Of True Airspeed Calculations In Supersonic Flight, Leonard T. Huang, Lisa I. Cummings

International Journal of Aviation, Aeronautics, and Aerospace

In the first half of this paper, we present a fresh perspective toward the Wind Triangle Problem in aerial navigation by deriving necessary and sufficient conditions, which we call "go/no-go conditions", for the existence/non-existence of a solution of the problem. Although our derivation is based on simple trigonometry and basic properties of quadratic functions, it is mathematically rigorous. We also offer examples to demonstrate how easy it is to check these conditions graphically. In the second half of this paper, we use function theory to re-examine another problem in aerial navigation, namely, that of computing true airspeed — even in …


Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, Sergey V. Drakunov, William Mackunis, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu Oct 2020

Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, Sergey V. Drakunov, William Mackunis, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu

Publications

A sliding mode observer is presented, which is rigorously proven to achieve finite-time state estimation of a dual-parallel underactuated (i.e., single-input multi-output) cart inverted pendulum system in the presence of parametric uncertainty. A salient feature of the proposed sliding mode observer design is that a rigorous analysis is provided, which proves finite-time estimation of the complete system state in the presence of input-multiplicative parametric uncertainty. The performance of the proposed observer design is demonstrated through numerical case studies using both sliding mode control (SMC)- and linear quadratic regulator (LQR)-based closed-loop control systems. The main contribution presented here is the rigorous …


Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, William Mackunis, Sergey V. Drakunov, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu Oct 2020

Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, William Mackunis, Sergey V. Drakunov, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu

Publications

A sliding mode observer is presented, which is rigorously proven to achieve finite-time state estimation of a dual-parallel underactuated (i.e., single-input multi-output) cart inverted pendulum system in the presence of parametric uncertainty. A salient feature of the proposed sliding mode observer design is that a rigorous analysis is provided, which proves finite-time estimation of the complete system state in the presence of input-multiplicative parametric uncertainty. The performance of the proposed observer design is demonstrated through numerical case studies using both sliding mode control (SMC)- and linear quadratic regulator (LQR)-based closed-loop control systems. The main contribution presented here is the rigorous …


Optimization Of Spacecraft Formations About Lagrange Points For The Next Generation Space Weather Prediction Mission, Roberto Cuéllar Rangel Jul 2020

Optimization Of Spacecraft Formations About Lagrange Points For The Next Generation Space Weather Prediction Mission, Roberto Cuéllar Rangel

Doctoral Dissertations and Master's Theses

This thesis’s work serves as proof of concept for the Next Generation Space Weather Prediction Mission, a multi-spacecraft mission at various libration points whose objective is to forecast Space Weather hazards with a 12day warning time. This thesis deals with the design and control of orbits of spacecraft formations at different libration points. The systems studied are SunEarth, SunVenus, SunMercury, and SunMars. The orbit design and formation keeping control of the spacecraft are solved simultaneously using an optimization software called DIDO. Initial conditions are obtained through two different strategies. The first one, by placing the spacecraft in a tetrahedral formation …


Supercritical Carbon Dioxide Based Heat Exchanger On The Martian, Sarah Guinn Apr 2020

Supercritical Carbon Dioxide Based Heat Exchanger On The Martian, Sarah Guinn

Discovery Day - Prescott

The use of supercritical carbon dioxide (sCO2) in power cycles has been fairly new in the last decade. Due to this, there is a lack in research for both terrestrial and extraterrestrial applications. The purpose of this project is to utilize sCO2 as a working fluid and design and optimize a Brayton Cycle based heat exchanger on the Martian surface. Due to the lack of water on Mars, this research will provide a stronger analysis of planetary based drycooling processes in low atmospheric pressure and colder temperatures. We have been conducting an in-depth analysis of the heat exchanger by modeling …


Real-Time Urban Weather Observations For Urban Air Mobility, Kevin A. Adkins, Mustafa Akbas, Marc Compere Jan 2020

Real-Time Urban Weather Observations For Urban Air Mobility, Kevin A. Adkins, Mustafa Akbas, Marc Compere

International Journal of Aviation, Aeronautics, and Aerospace

Cities of the future will have to overcome congestion, air pollution and increasing infrastructure cost while moving more people and goods smoothly, efficiently and in an eco-friendly manner. Urban air mobility (UAM) is expected to be an integral component of achieving this new type of city. This is a new environment for sustained aviation operations. The heterogeneity of the urban fabric and the roughness elements within it create a unique environment where flight conditions can change frequently across very short distances. UAM vehicles with their lower mass, more limited thrust and slower speeds are especially sensitive to these conditions. Since …


Feasibility Of Circular Orbits For Proximity Operations In Strongly Perturbed Environments Around Uniformly Rotating Asteroids, Nicholas Peter Liapis Aug 2019

Feasibility Of Circular Orbits For Proximity Operations In Strongly Perturbed Environments Around Uniformly Rotating Asteroids, Nicholas Peter Liapis

Doctoral Dissertations and Master's Theses

Asteroids have been mapped and observed since 1801 when an Italian astronomer Guiseppe Piazzi discovered Ceres (Serio, Manara, & Sicoli, 2002). Since then, asteroids have been growing in popularity throughout the scientific community because they are thought to hold the information we need to understand how the solar system developed and why life exists on earth, as well as potential precious resources. This research studies different types of orbits that have been performed to date around asteroids and how they can be reworked to require less control effort. Different types of missions that have been sent to asteroids are discussed, …


Astria Ontology: Open, Standards-Based, Data-Aggregated Representation Of Space Objects, Jennie Wolfgang, Kathleen Krysher, Michael Slovenski, Unmil P. Karadkar, Shiva Iyer, Moriba K. Jah Feb 2019

Astria Ontology: Open, Standards-Based, Data-Aggregated Representation Of Space Objects, Jennie Wolfgang, Kathleen Krysher, Michael Slovenski, Unmil P. Karadkar, Shiva Iyer, Moriba K. Jah

Space Traffic Management Conference

The necessity for standards-based ontologies for long-term sustainability of space operations and safety of increasing space flights has been well-established [6, 7]. Current ontologies, such as DARPA’s OrbitOutlook [5], are not publicly available, complicating efforts for their broad adoption. Most sensor data is siloed in proprietary databases [2] and provided only to authorized users, further complicating efforts to create a holistic view of resident space objects (RSOs) in order to enhance space situational awareness (SSA).

The ASTRIA project is developing an open data model with the goal of aggregating data about RSOs, parts, space weather, and governing policies in order …


Nanosat Tracking And Identification Techniques And Technologies, Mark A. Skinner Feb 2019

Nanosat Tracking And Identification Techniques And Technologies, Mark A. Skinner

Space Traffic Management Conference

Nanosats (and CubeSats, ‘Smallsats’, etc.) are of order 10 cm in size, and are at or near the limits of what can be tracked and characterized, using existing space surveillance assets. Additionally, given the CubeSat form-factor, they are often launched in large numbers (scores), and can be virtually identical. Thus are they difficult to track and to identify.

We have identified a number of technologies that future nanosat missions could employ that would enhance the trackability and/or identification of their satellites when on-orbit. Some of these technologies require active illumination of the satellite with electromagnetic energy, either in the radio …


Uas Flight Operations In Complex Terrain: Assessing The Agricultural Impact From Hurricane Maria In The Central Mountainous Region Of Puerto Rico, Kevin Adkins Jan 2019

Uas Flight Operations In Complex Terrain: Assessing The Agricultural Impact From Hurricane Maria In The Central Mountainous Region Of Puerto Rico, Kevin Adkins

Publications

Hurricane Maria struck Puerto Rico in September 2017 as a Category 4 storm causing major damage to infrastructure, agriculture and natural ecosystems, as well as the loss of many lives. Among the crops hardest hit was coffee, one of the most important crops in Puerto Rico. As a perennial system, coffee takes various production forms along a gradient from high shade/biodiversity coffee farms to low shade coffee monocultures and therefore offers an ideal means for the study of resistance and resilience of an agroecosystem to weather and climate disturbance. During the summer of 2018, 14 impacted farms across the production …


Urban Flow And Small Unmanned Aerial System Operations In The Built Environment, Kevin A. Adkins Jan 2019

Urban Flow And Small Unmanned Aerial System Operations In The Built Environment, Kevin A. Adkins

International Journal of Aviation, Aeronautics, and Aerospace

The Federal Aviation Administration (FAA) has put forth a set of regulations (Part 107) that govern small unmanned aerial system (sUAS) operations. These regulations restrict unmanned aircraft (UA) from flying over people and their operation to within visual line of sight (VLOS). However, as new applications for unmanned aerial systems (UAS) are discovered, their capabilities improve, and regulations evolve, there is an increasing desire to undertake urban operations, such as urban air mobility, package delivery, infrastructure inspection, and surveillance. This built environment poses new weather hazards that include enhanced wind shear and turbulence. The smaller physical dimensions, lower mass and …


Satellite Maintenance: An Opportunity To Minimize The Kessler Effect, Bettina M. Mrusek Dr. Jan 2019

Satellite Maintenance: An Opportunity To Minimize The Kessler Effect, Bettina M. Mrusek Dr.

International Journal of Aviation, Aeronautics, and Aerospace

Recently, there has been an emphasis on the growing problem of orbital debris. While the advantages of placing satellites into space are numerous, advances in satellite technology combined with the growth of the industry have resulted with a significant amount of debris in the orbits surrounding our planet. The harshness of the space environment has also contributed to the debris, as evidenced by the number of objects currently in orbit which are not operational. As the amount of debris grows, so too does the likelihood of collisions, ultimately culminating in the Kessler Effect. However, recent advances in propulsion, advanced navigation, …


Floating Active Baffles, System And Method Of Slosh Damping Comprising The Same, Dae Won Kim, Rudy L. Baum, Vijay Santhanam, Balaji Sivasubramanian, Sathya Gangadharan Sep 2018

Floating Active Baffles, System And Method Of Slosh Damping Comprising The Same, Dae Won Kim, Rudy L. Baum, Vijay Santhanam, Balaji Sivasubramanian, Sathya Gangadharan

Publications

This disclosure provides a system for damping slosh of a liquid within a tank, a baffle for use in the system, and a method of damping slosh using the system. The system includes a plurality of baffles. Each baffle has a body configured to substantially float upon the liquid. Each baffle also has an activation material received along at least a portion of the body. The activation material is magnetically reactive provided in a quantity sufficient to enable the body to be manipulated in the presence of a magnetic field (M). The system further includes an actuator configured to pro­vide …