Open Access. Powered by Scholars. Published by Universities.®

Biomedical Informatics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biomedical Informatics

Vertical Federated Learning Using Autoencoders With Applications In Electrocardiograms, Wesley William Chorney Aug 2023

Vertical Federated Learning Using Autoencoders With Applications In Electrocardiograms, Wesley William Chorney

Theses and Dissertations

Federated learning is a framework in machine learning that allows for training a model while maintaining data privacy. Moreover, it allows clients with their own data to collaborate in order to build a stronger, shared model. Federated learning is of particular interest to healthcare data, since it is of the utmost importance to respect patient privacy while still building useful diagnostic tools. However, healthcare data can be complicated — data format might differ across providers, leading to unexpected inputs and incompatibility between different providers. For example, electrocardiograms might differ in sampling rate or number of leads used, meaning that a …


Evidence Assisted Learning For Clinical Decision Support Systems, Bhanu Pratap Singh Rawat Aug 2023

Evidence Assisted Learning For Clinical Decision Support Systems, Bhanu Pratap Singh Rawat

Doctoral Dissertations

Clinical decision support systems (CDSS) provide intelligently filtered knowledge and patient-specific and population information to the clinicians, nursing staff and healthcare professionals. CDSS can significantly improve the quality, safety, efficiency and effectiveness of health care. Over the last decade, American hospitals have adopted electronic health records (EHRs) widely resulting in a massive collection of clinical notes such as admission notes, physician notes, nursing notes and discharge summaries. For the past couple of decades, most of the work in CDSS has been focused on developing knowledge-based systems using structured data such as medications and ICD codes. In contrast, the EHR notes …


Feature Selection From Clinical Surveys Using Semantic Textual Similarity, Benjamin Warner May 2023

Feature Selection From Clinical Surveys Using Semantic Textual Similarity, Benjamin Warner

McKelvey School of Engineering Theses & Dissertations

Survey data collected from human subjects can contain a high number of features while having a comparatively low quantity of examples. Machine learning models that attempt to predict outcomes from survey data under these conditions can overfit and result in poor generalizability. One remedy to this issue is feature selection, which attempts to select an optimal subset of features to learn upon. A relatively unexplored source of information in the feature selection process is the usage of textual names of features, which may be semantically indicative of which features are relevant to a target outcome. The relationships between feature names …


Multiparametric Magnetic Resonance Imaging Artificial Intelligence Pipeline For Oropharyngeal Cancer Radiotherapy Treatment Guidance, Kareem Wahid May 2023

Multiparametric Magnetic Resonance Imaging Artificial Intelligence Pipeline For Oropharyngeal Cancer Radiotherapy Treatment Guidance, Kareem Wahid

Dissertations & Theses (Open Access)

Oropharyngeal cancer (OPC) is a widespread disease and one of the few domestic cancers that is rising in incidence. Radiographic images are crucial for assessment of OPC and aid in radiotherapy (RT) treatment. However, RT planning with conventional imaging approaches requires operator-dependent tumor segmentation, which is the primary source of treatment error. Further, OPC expresses differential tumor/node mid-RT response (rapid response) rates, resulting in significant differences between planned and delivered RT dose. Finally, clinical outcomes for OPC patients can also be variable, which warrants the investigation of prognostic models. Multiparametric MRI (mpMRI) techniques that incorporate simultaneous anatomical and functional information …


Machine Learning Methods For Computational Phenotyping Using Patient Healthcare Data With Noisy Labels, Praveen Kumar Feb 2023

Machine Learning Methods For Computational Phenotyping Using Patient Healthcare Data With Noisy Labels, Praveen Kumar

Computer Science ETDs

Positive and Unlabeled (PU) learning problems abound in many real-world applications. In healthcare informatics, diagnosed patients are considered labeled positive for a specific disease, but being undiagnosed does not mean they can be labeled negative. PU learning can improve classification performance, and estimate the positive fraction, α, among unlabeled samples. However, algorithms based on the Selected Completely At Random (SCAR) assumption are inadequate when the SCAR assumption fails (e.g., severe cases overrepresented), and when class imbalance is substantial. This dissertation presents and evaluates new algorithms to overcome these limitations. The proposed methods outperform the state-of-art for α-estimation, enhance classification performance, …


An Explainable Deep Learning Prediction Model For Severity Of Alzheimer's Disease From Brain Images, Godwin O. Ekuma Jan 2023

An Explainable Deep Learning Prediction Model For Severity Of Alzheimer's Disease From Brain Images, Godwin O. Ekuma

MSU Graduate Theses

Deep Convolutional Neural Networks (CNNs) have become the go-to method for medical imaging classification on various imaging modalities for binary and multiclass problems. Deep CNNs extract spatial features from image data hierarchically, with deeper layers learning more relevant features for the classification application. The effectiveness of deep learning models are hampered by limited data sets, skewed class distributions, and the undesirable "black box" of neural networks, which decreases their understandability and usability in precision medicine applications. This thesis addresses the challenge of building an explainable deep learning model for a clinical application: predicting the severity of Alzheimer's disease (AD). AD …


Machine Learning Framework For Real-World Electronic Health Records Regarding Missingness, Interpretability, And Fairness, Jing Lucas Liu Jan 2023

Machine Learning Framework For Real-World Electronic Health Records Regarding Missingness, Interpretability, And Fairness, Jing Lucas Liu

Theses and Dissertations--Computer Science

Machine learning (ML) and deep learning (DL) techniques have shown promising results in healthcare applications using Electronic Health Records (EHRs) data. However, their adoption in real-world healthcare settings is hindered by three major challenges. Firstly, real-world EHR data typically contains numerous missing values. Secondly, traditional ML/DL models are typically considered black-boxes, whereas interpretability is required for real-world healthcare applications. Finally, differences in data distributions may lead to unfairness and performance disparities, particularly in subpopulations.

This dissertation proposes methods to address missing data, interpretability, and fairness issues. The first work proposes an ensemble prediction framework for EHR data with large missing …


Knowledge Discovery On The Integrative Analysis Of Electrical And Mechanical Dyssynchrony To Improve Cardiac Resynchronization Therapy, Zhuo He Jan 2023

Knowledge Discovery On The Integrative Analysis Of Electrical And Mechanical Dyssynchrony To Improve Cardiac Resynchronization Therapy, Zhuo He

Dissertations, Master's Theses and Master's Reports

Cardiac resynchronization therapy (CRT) is a standard method of treating heart failure by coordinating the function of the left and right ventricles. However, up to 40% of CRT recipients do not experience clinical symptoms or cardiac function improvements. The main reasons for CRT non-response include: (1) suboptimal patient selection based on electrical dyssynchrony measured by electrocardiogram (ECG) in current guidelines; (2) mechanical dyssynchrony has been shown to be effective but has not been fully explored; and (3) inappropriate placement of the CRT left ventricular (LV) lead in a significant number of patients.

In terms of mechanical dyssynchrony, we utilize an …