Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Humans

Life Sciences

Selected Works

2011

Articles 1 - 10 of 10

Full-Text Articles in Medicine and Health Sciences

Nitric Oxide-Mediated Inhibition Of Hdm2-P53 Binding, Christopher Schonhoff, Marie-Claire Daou, Stephen Jones, Celia Schiffer, Alonzo Ross Nov 2011

Nitric Oxide-Mediated Inhibition Of Hdm2-P53 Binding, Christopher Schonhoff, Marie-Claire Daou, Stephen Jones, Celia Schiffer, Alonzo Ross

Celia A. Schiffer

It has become increasingly evident that nitric oxide exerts its effects, in part, by S-nitrosylation of cysteine residues. We tested in vitro whether nitric oxide may indirectly control p53 by S-nitrosylation and inactivation of the p53 negative regulator, Hdm2. Treatment of Hdm2 with a nitric oxide donor inhibits Hdm2-p53 binding, a critical step in Hdm2 regulation of p53. The presence of excess amounts of cysteine or dithiothreitol blocks this inhibition of binding. Moreover, nitric oxide inhibition of Hdm2-p53 binding was found to be reversible. Sulfhydryl sensitivity and reversibility are consistent with nitrosylation. Finally, we have identified a critical cysteine residue …


Co-Evolution Of Nelfinavir-Resistant Hiv-1 Protease And The P1-P6 Substrate, Madhavi Kolli, Stephane Lastere, Celia Schiffer Nov 2011

Co-Evolution Of Nelfinavir-Resistant Hiv-1 Protease And The P1-P6 Substrate, Madhavi Kolli, Stephane Lastere, Celia Schiffer

Celia A. Schiffer

The selective pressure of the competitive protease inhibitors causes both HIV-1 protease and occasionally its substrates to evolve drug resistance. We hypothesize that this occurs particularly in substrates that protrude beyond the substrate envelope and contact residues that mutate in response to a particular protease inhibitor. To validate this hypothesis, we analyzed substrate and protease sequences for covariation. Using the chi2 test, we show a positive correlation between the nelfinavir-resistant D30N/N88D protease mutations and mutations at the p1-p6 cleavage site as compared to the other cleavage sites. Both nelfinavir and the substrate p1-p6 protrude beyond the substrate envelope and contact …


Mechanism Of Substrate Recognition By Drug-Resistant Human Immunodeficiency Virus Type 1 Protease Variants Revealed By A Novel Structural Intermediate, Moses Prabu-Jeyabalan, Ellen A. Nalivaika, Keith Romano, Celia A. Schiffer Nov 2011

Mechanism Of Substrate Recognition By Drug-Resistant Human Immunodeficiency Virus Type 1 Protease Variants Revealed By A Novel Structural Intermediate, Moses Prabu-Jeyabalan, Ellen A. Nalivaika, Keith Romano, Celia A. Schiffer

Celia A. Schiffer

Human immunodeficiency virus type 1 (HIV-1) protease processes and cleaves the Gag and Gag-Pol polyproteins, allowing viral maturation, and therefore is an important target for antiviral therapy. Ligand binding occurs when the flaps open, allowing access to the active site. This flexibility in flap geometry makes trapping and crystallizing structural intermediates in substrate binding challenging. In this study, we report two crystal structures of two HIV-1 protease variants bound with their corresponding nucleocapsid-p1 variant. One of the flaps in each of these structures exhibits an unusual "intermediate" conformation. Analysis of the flap-intermediate and flap-closed crystal structures reveals that the intermonomer …


Point Mutants Of Ehec Intimin That Diminish Tir Recognition And Actin Pedestal Formation Highlight A Putative Tir Binding Pocket, Hui Liu, Padhma Radhakrishnan, Loranne Magoun, Moses Prabu-Jeyabalan, Kenneth Campellone, Pamela Savage, Feng He, Celia Schiffer, John Leong Nov 2011

Point Mutants Of Ehec Intimin That Diminish Tir Recognition And Actin Pedestal Formation Highlight A Putative Tir Binding Pocket, Hui Liu, Padhma Radhakrishnan, Loranne Magoun, Moses Prabu-Jeyabalan, Kenneth Campellone, Pamela Savage, Feng He, Celia Schiffer, John Leong

Celia A. Schiffer

Attachment to host cells by enterohaemorrhagic Escherichia coli (EHEC) is associated with the formation of a highly organized cytoskeletal structure containing filamentous actin, termed an attaching and effacing (AE) lesion. Intimin, an outer membrane protein of EHEC, is required for the formation of AE lesions, as is Tir, a bacterial protein that is translocated into the host cell to function as a receptor for intimin. We established a yeast two-hybrid assay for intimin-Tir interaction and, after random mutagenesis, isolated 24 point mutants in intimin, which disrupted Tir recognition in this system. Analysis of 11 point mutants revealed a correlation between …


Structural And Thermodynamic Basis For The Binding Of Tmc114, A Next-Generation Human Immunodeficiency Virus Type 1 Protease Inhibitor, Nancy King, Moses Prabu-Jeyabalan, Ellen Nalivaika, Piet Wigerinck, Marie-Pierre De Bethune, Celia Schiffer Nov 2011

Structural And Thermodynamic Basis For The Binding Of Tmc114, A Next-Generation Human Immunodeficiency Virus Type 1 Protease Inhibitor, Nancy King, Moses Prabu-Jeyabalan, Ellen Nalivaika, Piet Wigerinck, Marie-Pierre De Bethune, Celia Schiffer

Celia A. Schiffer

TMC114, a newly designed human immunodeficiency virus type 1 (HIV-1) protease inhibitor, is extremely potent against both wild-type (wt) and multidrug-resistant (MDR) viruses in vitro as well as in vivo. Although chemically similar to amprenavir (APV), the potency of TMC114 is substantially greater. To examine the basis for this potency, we solved crystal structures of TMC114 complexed with wt HIV-1 protease and TMC114 and APV complexed with an MDR (L63P, V82T, and I84V) protease variant. In addition, we determined the corresponding binding thermodynamics by isothermal titration calorimetry. TMC114 binds approximately 2 orders of magnitude more tightly to the wt enzyme …


Lack Of Synergy For Inhibitors Targeting A Multi-Drug-Resistant Hiv-1 Protease, Nancy King, Laurence Melnick, Moses Prabu-Jeyabalan, Ellen Nalivaika, Shiow-Shong Yang, Yun Gao, Xiaoyi Nie, Charles Zepp, Donald Heefner, Celia Schiffer Nov 2011

Lack Of Synergy For Inhibitors Targeting A Multi-Drug-Resistant Hiv-1 Protease, Nancy King, Laurence Melnick, Moses Prabu-Jeyabalan, Ellen Nalivaika, Shiow-Shong Yang, Yun Gao, Xiaoyi Nie, Charles Zepp, Donald Heefner, Celia Schiffer

Celia A. Schiffer

The three-dimensional structures of indinavir and three newly synthesized indinavir analogs in complex with a multi-drug-resistant variant (L63P, V82T, I84V) of HIV-1 protease were determined to approximately 2.2 A resolution. Two of the three analogs have only a single modification of indinavir, and their binding affinities to the variant HIV-1 protease are enhanced over that of indinavir. However, when both modifications were combined into a single compound, the binding affinity to the protease variant was reduced. On close examination, the structural rearrangements in the protease that occur in the tightest binding inhibitor complex are mutually exclusive with the structural rearrangements …


Contribution Of Ser386 And Ser396 To Activation Of Interferon Regulatory Factor 3, Weijun Chen, Hema Srinath, Suvana Lam, Celia Schiffer, William Royer, Kai Lin Nov 2011

Contribution Of Ser386 And Ser396 To Activation Of Interferon Regulatory Factor 3, Weijun Chen, Hema Srinath, Suvana Lam, Celia Schiffer, William Royer, Kai Lin

Celia A. Schiffer

IRF-3, a member of the interferon regulatory factor (IRF) family of transcription factors, functions in innate immune defense against viral infection. Upon infection, host cell IRF-3 is activated by phosphorylation at its seven C-terminal Ser/Thr residues: (385)SSLENTVDLHISNSHPLSLTS(405). This phosphoactivation triggers IRF-3 to react with the coactivators, CREB-binding protein (CBP)/p300, to form a complex that activates target genes in the nucleus. However, the role of each phosphorylation site for IRF-3 phosphoactivation remains unresolved. To address this issue, all seven Ser/Thr potential phosphorylation sites were screened by mutational studies, size-exclusion chromatography, and isothermal titration calorimetry. Using purified proteins, we show that CBP …


Role Of Hypoxia And Glycolysis In The Development Of Multi-Drug Resistance In Human Tumor Cells And The Establishment Of An Orthotopic Multi-Drug Resistant Tumor Model In Nude Mice Using Hypoxic Pre-Conditioning, Lara Milane, Zhenfeng Duan, Mansoor M. Amiji Sep 2011

Role Of Hypoxia And Glycolysis In The Development Of Multi-Drug Resistance In Human Tumor Cells And The Establishment Of An Orthotopic Multi-Drug Resistant Tumor Model In Nude Mice Using Hypoxic Pre-Conditioning, Lara Milane, Zhenfeng Duan, Mansoor M. Amiji

Mansoor M. Amiji

Background The development of multi-drug resistant (MDR) cancer is a significant challenge in the clinical treatment of recurrent disease. Hypoxia is an environmental selection pressure that contributes to the development of MDR. Many cancer cells, including MDR cells, resort to glycolysis for energy acquisition. This study aimed to explore the relationship between hypoxia, glycolysis, and MDR in a panel of human breast and ovarian cancer cells. A second aim of this study was to develop an orthotopic animal model of MDR breast cancer. Methods Nucleic and basal protein was extracted from a panel of human breast and ovarian cancer cells; …


Dengue Virus Nonstructural Protein Ns5 Induces Interleukin-8 Transcription And Secretion, Carey L. Medin, Katherine A. Fitzgerald, Alan L. Rothman Jul 2011

Dengue Virus Nonstructural Protein Ns5 Induces Interleukin-8 Transcription And Secretion, Carey L. Medin, Katherine A. Fitzgerald, Alan L. Rothman

Katherine A. Fitzgerald

Elevated circulating levels of chemokines have been reported in patients with dengue fever and are proposed to contribute to the pathogenesis of dengue disease. To establish in vitro models for chemokine induction by dengue 2 virus (DEN2V), we studied a variety of human cell lines and primary cells. DEN2V infection of HepG2 and primary dendritic cells induced the production of interleukin-8 (IL-8), RANTES, MIP-1alpha, and MIP-1beta, whereas only IL-8 and RANTES were induced following dengue virus infection of HEK293 cells. Chemokine secretion was accompanied by an increase in steady-state mRNA levels. No chemokine induction was observed in HEK293 cells treated …


Lps-Tlr4 Signaling To Irf-3/7 And Nf-Kappab Involves The Toll Adapters Tram And Trif, Katherine A. Fitzgerald, Daniel C. Rowe, Betsy J. Barnes, Daniel R. Caffrey, Alberto Visintin, Eicke Latz, Brian G. Monks, Paula M. Pitha, Douglas T. Golenbock Jul 2011

Lps-Tlr4 Signaling To Irf-3/7 And Nf-Kappab Involves The Toll Adapters Tram And Trif, Katherine A. Fitzgerald, Daniel C. Rowe, Betsy J. Barnes, Daniel R. Caffrey, Alberto Visintin, Eicke Latz, Brian G. Monks, Paula M. Pitha, Douglas T. Golenbock

Katherine A. Fitzgerald

Toll-IL-1-resistance (TIR) domain-containing adaptor-inducing IFN-beta (TRIF)-related adaptor molecule (TRAM) is the fourth TIR domain-containing adaptor protein to be described that participates in Toll receptor signaling. Like TRIF, TRAM activates interferon regulatory factor (IRF)-3, IRF-7, and NF-kappaB-dependent signaling pathways. Toll-like receptor (TLR)3 and 4 activate these pathways to induce IFN-alpha/beta, regulated on activation, normal T cell expressed and secreted (RANTES), and gamma interferon-inducible protein 10 (IP-10) expression independently of the adaptor protein myeloid differentiation factor 88 (MyD88). Dominant negative and siRNA studies performed here demonstrate that TRIF functions downstream of both the TLR3 (dsRNA) and TLR4 (LPS) signaling pathways, whereas the …