Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Humans

Life Sciences

Molecular and Cellular Biochemistry Faculty Publications

Articles 1 - 7 of 7

Full-Text Articles in Medicine and Health Sciences

Stress-Induced Epinephrine Enhances Lactate Dehydrogenase A And Promotes Breast Cancer Stem-Like Cells, Bai Cui, Yuanyuan Luo, Pengfei Tian, Fei Peng, Jinxin Lu, Yongliang Yang, Qitong Su, Bing Liu, Jiachuan Yu, Xi Luo, Liu Yin, Wei Cheng, Fan An, Bin He, Dapeng Liang, Sijin Wu, Peng Chu, Luyao Song, Xinyu Liu, Huandong Luo, Binhua P. Zhou Mar 2019

Stress-Induced Epinephrine Enhances Lactate Dehydrogenase A And Promotes Breast Cancer Stem-Like Cells, Bai Cui, Yuanyuan Luo, Pengfei Tian, Fei Peng, Jinxin Lu, Yongliang Yang, Qitong Su, Bing Liu, Jiachuan Yu, Xi Luo, Liu Yin, Wei Cheng, Fan An, Bin He, Dapeng Liang, Sijin Wu, Peng Chu, Luyao Song, Xinyu Liu, Huandong Luo, Binhua P. Zhou

Molecular and Cellular Biochemistry Faculty Publications

Chronic stress triggers activation of the sympathetic nervous system and drives malignancy. Using an immunodeficient murine system, we showed that chronic stress–induced epinephrine promoted breast cancer stem-like properties via lactate dehydrogenase A–dependent (LDHA-dependent) metabolic rewiring. Chronic stress–induced epinephrine activated LDHA to generate lactate, and the adjusted pH directed USP28-mediated deubiquitination and stabilization of MYC. The SLUG promoter was then activated by MYC, which promoted development of breast cancer stem-like traits. Using a drug screen that targeted LDHA, we found that a chronic stress–induced cancer stem-like phenotype could be reversed by vitamin C. These findings demonstrated the critical importance of psychological …


Targeting The Brd4/Foxo3a/Cdk6 Axis Sensitizes Akt Inhibition In Luminal Breast Cancer, Jingyi Liu, Weijie Guo, Zhibing Duan, Lei Zeng, Yadi Wu, Yule Chen, Fang Tai, Yifan Wang, Yiwei Lin, Qiang Zhang, Yanling He, Jiong Deng, Rachel L. Stewart, Chi Wang, Pengnian Charles Lin, Saghi Ghaffari, B. Mark Evers, Suling Liu, Ming-Ming Zhou, Binhua P. Zhou, Jian Shi Dec 2018

Targeting The Brd4/Foxo3a/Cdk6 Axis Sensitizes Akt Inhibition In Luminal Breast Cancer, Jingyi Liu, Weijie Guo, Zhibing Duan, Lei Zeng, Yadi Wu, Yule Chen, Fang Tai, Yifan Wang, Yiwei Lin, Qiang Zhang, Yanling He, Jiong Deng, Rachel L. Stewart, Chi Wang, Pengnian Charles Lin, Saghi Ghaffari, B. Mark Evers, Suling Liu, Ming-Ming Zhou, Binhua P. Zhou, Jian Shi

Molecular and Cellular Biochemistry Faculty Publications

BRD4 assembles transcriptional machinery at gene super-enhancer regions and governs the expression of genes that are critical for cancer progression. However, it remains unclear whether BRD4-mediated gene transcription is required for tumor cells to develop drug resistance. Our data show that prolonged treatment of luminal breast cancer cells with AKT inhibitors induces FOXO3a dephosphorylation, nuclear translocation, and disrupts its association with SirT6, eventually leading to FOXO3a acetylation as well as BRD4 recognition. Acetylated FOXO3a recognizes the BD2 domain of BRD4, recruits the BRD4/RNAPII complex to the CDK6 gene promoter, and induces its transcription. Pharmacological inhibition of either BRD4/FOXO3a association or …


Direct Cell-To-Cell Transmission Of Respiratory Viruses: The Fast Lanes, Nicolás P. Cifuentes-Muñoz, Rebecca Ellis Dutch, Roberto Cattaneo Jun 2018

Direct Cell-To-Cell Transmission Of Respiratory Viruses: The Fast Lanes, Nicolás P. Cifuentes-Muñoz, Rebecca Ellis Dutch, Roberto Cattaneo

Molecular and Cellular Biochemistry Faculty Publications

Virus particles protect genomes from hostile environments within and outside the host, eventually delivering these genomes to target tissues to initiate infection. Complex processes requiring significant energy and time are necessary to assemble these virus particles, but only a small portion of released virus will successfully infect new target cells (Fig 1A). While the science of virology has developed based on the isolation and purification of viral particles, it is becoming increasingly clear that direct cell-to-cell transmission of viruses and/or viral components is also highly relevant [1,2].

Direct cell-to-cell spread of infections has several advantages. The first is efficiency: genomic …


Nanoparticle Delivery Of Mir-34a Eradicates Long-Term-Cultured Breast Cancer Stem Cells Via Targeting C22orf28 Directly, Xiaoti Lin, Weiyu Chen, Fengqin Wei, Binhua P. Zhou, Mien-Chie Hung, Xiaoming Xie Oct 2017

Nanoparticle Delivery Of Mir-34a Eradicates Long-Term-Cultured Breast Cancer Stem Cells Via Targeting C22orf28 Directly, Xiaoti Lin, Weiyu Chen, Fengqin Wei, Binhua P. Zhou, Mien-Chie Hung, Xiaoming Xie

Molecular and Cellular Biochemistry Faculty Publications

Rationale: Cancer stem cells (CSCs) have been implicated as the seeds of therapeutic resistance and metastasis, due to their unique abilities of self-renew, wide differentiation potentials and resistance to most conventional therapies. It is a proactive strategy for cancer therapy to eradicate CSCs. Methods: Tumor tissue-derived breast CSCs (BCSC), including XM322 and XM607, were isolated by fluorescence-activated cell sorting (FACS); while cell line-derived BCSC, including MDA-MB-231.SC and MCF-7.SC, were purified by magnetic-activated cell sorting (MACS). Analyses of microRNA and mRNA expression array profiles were performed in multiple breast cell lines. The mentioned nanoparticles were constructed following the standard molecular cloning …


Quantitative Mass Spectrometry Reveals Changes In Histone H2b Variants As Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation, Matthew Rea, Tingting Jiang, Rebekah Eleazer, Meredith Eckstein, Alan G. Marshall, Yvonne N. Fondufe-Mittendorf May 2016

Quantitative Mass Spectrometry Reveals Changes In Histone H2b Variants As Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation, Matthew Rea, Tingting Jiang, Rebekah Eleazer, Meredith Eckstein, Alan G. Marshall, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Exposure to inorganic arsenic, a ubiquitous environmental toxic metalloid, leads to carcinogenesis. However, the mechanism is unknown. Several studies have shown that inorganic arsenic exposure alters specific gene expression patterns, possibly through alterations in chromatin structure. While most studies on understanding the mechanism of chromatin-mediated gene regulation have focused on histone post-translational modifications, the role of histone variants remains largely unknown. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function in arsenic-mediated carcinogenesis, analysis of the histone variants incorporated into the nucleosome and their covalent modifications is required. Here …


P-Rex1 Promotes Resistance To Vegf/Vegfr-Targeted Therapy In Prostate Cancer, Hira Lal Goel, Bryan Pursell, Leonard D. Shultz, Dale L. Greiner, Rolf A Brekken, Craig W. Vander Kooi, Arthur M. Mercurio Mar 2016

P-Rex1 Promotes Resistance To Vegf/Vegfr-Targeted Therapy In Prostate Cancer, Hira Lal Goel, Bryan Pursell, Leonard D. Shultz, Dale L. Greiner, Rolf A Brekken, Craig W. Vander Kooi, Arthur M. Mercurio

Molecular and Cellular Biochemistry Faculty Publications

Autocrine VEGF signaling is critical for sustaining prostate and other cancer stem cells (CSCs), and it is a potential therapeutic target, but we observed that CSCs isolated from prostate tumors are resistant to anti-VEGF (bevacizumab) and anti-VEGFR (sunitinib) therapy. Intriguingly, resistance is mediated by VEGF/neuropilin signaling, which is not inhibited by bevacizumab and sunitinib, and it involves the induction of P-Rex1, a Rac GEF, and consequent Rac1-mediated ERK activation. This induction of P-Rex1 is dependent on Myc. CSCs isolated from the PTENpc−/− transgenic model of prostate cancer exhibit Rac1-dependent resistance to bevacizumab. Rac1 inhibition or P-Rex1 downregulation increases the …


Active Site Mutations Change The Cleavage Specificity Of Neprilysin., Travis Sexton, Lisa J. Hitchcook, David W. Rodgers, Luke H. Bradley, Louis B. Hersh Feb 2012

Active Site Mutations Change The Cleavage Specificity Of Neprilysin., Travis Sexton, Lisa J. Hitchcook, David W. Rodgers, Luke H. Bradley, Louis B. Hersh

Molecular and Cellular Biochemistry Faculty Publications

Neprilysin (NEP), a member of the M13 subgroup of the zinc-dependent endopeptidase family is a membrane bound peptidase capable of cleaving a variety of physiological peptides. We have generated a series of neprilysin variants containing mutations at either one of two active site residues, Phe563 and Ser546. Among the mutants studied in detail we observed changes in their activity towards leucine5-enkephalin, insulin B chain, and amyloid β1-40. For example, NEPF563I displayed an increase in preference towards cleaving leucine5-enkephalin relative to insulin B chain, while mutant NEPS546E was less discriminating …