Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Humans

Life Sciences

Celia A. Schiffer

Publication Year
File Type

Articles 1 - 9 of 9

Full-Text Articles in Medicine and Health Sciences

Interview With Celia Schiffer, Celia Schiffer Jan 2015

Interview With Celia Schiffer, Celia Schiffer

Celia A. Schiffer

Celia Schiffer, a Professor in Biochemistry and Molecular Pharmacology; a former Director of UMass Center for AIDS Research; and a Founder and Co-Director for the Institute for Drug Resistance (University of Massachusetts Medical School, MA, USA). Schiffer has an undergraduate degree in physics from the University of Chicago, with a PhD in biophysics from University of California, San Francisco (CA, USA). She was a postdoctoral associate first at the ETH in Zurich and then at Genentech in San Francisco. Schiffer has published more than 100 peer reviewed journal articles. Her laboratory primarily uses structural biology, biophysical and chemistry techniques to …


Structural And Thermodynamic Basis Of Amprenavir/Darunavir And Atazanavir Resistance In Hiv-1 Protease With Mutations At Residue 50, Seema Mittal, Rajintha Bandaranayake, Nancy King, Moses Prabu-Jeyabalan, Madhavi Nalam, Ellen Nalivaika, Nese Yilmaz, Celia Schiffer Jul 2013

Structural And Thermodynamic Basis Of Amprenavir/Darunavir And Atazanavir Resistance In Hiv-1 Protease With Mutations At Residue 50, Seema Mittal, Rajintha Bandaranayake, Nancy King, Moses Prabu-Jeyabalan, Madhavi Nalam, Ellen Nalivaika, Nese Yilmaz, Celia Schiffer

Celia A. Schiffer

Drug resistance occurs through a series of subtle changes that maintain substrate recognition but no longer permit inhibitor binding. In HIV-1 protease, mutations at I50 are associated with such subtle changes that confer differential resistance to specific inhibitors. Residue I50 is located at the protease flap tips, closing the active site upon ligand binding. Under selective drug pressure, I50V/L substitutions emerge in patients, compromising drug susceptibility and leading to treatment failure. The I50V substitution is often associated with amprenavir (APV) and darunavir (DRV) resistance, while the I50L substitution is observed in patients failing atazanavir (ATV) therapy. To explain how APV, …


Nitric Oxide-Mediated Inhibition Of Hdm2-P53 Binding, Christopher Schonhoff, Marie-Claire Daou, Stephen Jones, Celia Schiffer, Alonzo Ross Nov 2011

Nitric Oxide-Mediated Inhibition Of Hdm2-P53 Binding, Christopher Schonhoff, Marie-Claire Daou, Stephen Jones, Celia Schiffer, Alonzo Ross

Celia A. Schiffer

It has become increasingly evident that nitric oxide exerts its effects, in part, by S-nitrosylation of cysteine residues. We tested in vitro whether nitric oxide may indirectly control p53 by S-nitrosylation and inactivation of the p53 negative regulator, Hdm2. Treatment of Hdm2 with a nitric oxide donor inhibits Hdm2-p53 binding, a critical step in Hdm2 regulation of p53. The presence of excess amounts of cysteine or dithiothreitol blocks this inhibition of binding. Moreover, nitric oxide inhibition of Hdm2-p53 binding was found to be reversible. Sulfhydryl sensitivity and reversibility are consistent with nitrosylation. Finally, we have identified a critical cysteine residue …


Co-Evolution Of Nelfinavir-Resistant Hiv-1 Protease And The P1-P6 Substrate, Madhavi Kolli, Stephane Lastere, Celia Schiffer Nov 2011

Co-Evolution Of Nelfinavir-Resistant Hiv-1 Protease And The P1-P6 Substrate, Madhavi Kolli, Stephane Lastere, Celia Schiffer

Celia A. Schiffer

The selective pressure of the competitive protease inhibitors causes both HIV-1 protease and occasionally its substrates to evolve drug resistance. We hypothesize that this occurs particularly in substrates that protrude beyond the substrate envelope and contact residues that mutate in response to a particular protease inhibitor. To validate this hypothesis, we analyzed substrate and protease sequences for covariation. Using the chi2 test, we show a positive correlation between the nelfinavir-resistant D30N/N88D protease mutations and mutations at the p1-p6 cleavage site as compared to the other cleavage sites. Both nelfinavir and the substrate p1-p6 protrude beyond the substrate envelope and contact …


Mechanism Of Substrate Recognition By Drug-Resistant Human Immunodeficiency Virus Type 1 Protease Variants Revealed By A Novel Structural Intermediate, Moses Prabu-Jeyabalan, Ellen A. Nalivaika, Keith Romano, Celia A. Schiffer Nov 2011

Mechanism Of Substrate Recognition By Drug-Resistant Human Immunodeficiency Virus Type 1 Protease Variants Revealed By A Novel Structural Intermediate, Moses Prabu-Jeyabalan, Ellen A. Nalivaika, Keith Romano, Celia A. Schiffer

Celia A. Schiffer

Human immunodeficiency virus type 1 (HIV-1) protease processes and cleaves the Gag and Gag-Pol polyproteins, allowing viral maturation, and therefore is an important target for antiviral therapy. Ligand binding occurs when the flaps open, allowing access to the active site. This flexibility in flap geometry makes trapping and crystallizing structural intermediates in substrate binding challenging. In this study, we report two crystal structures of two HIV-1 protease variants bound with their corresponding nucleocapsid-p1 variant. One of the flaps in each of these structures exhibits an unusual "intermediate" conformation. Analysis of the flap-intermediate and flap-closed crystal structures reveals that the intermonomer …


Point Mutants Of Ehec Intimin That Diminish Tir Recognition And Actin Pedestal Formation Highlight A Putative Tir Binding Pocket, Hui Liu, Padhma Radhakrishnan, Loranne Magoun, Moses Prabu-Jeyabalan, Kenneth Campellone, Pamela Savage, Feng He, Celia Schiffer, John Leong Nov 2011

Point Mutants Of Ehec Intimin That Diminish Tir Recognition And Actin Pedestal Formation Highlight A Putative Tir Binding Pocket, Hui Liu, Padhma Radhakrishnan, Loranne Magoun, Moses Prabu-Jeyabalan, Kenneth Campellone, Pamela Savage, Feng He, Celia Schiffer, John Leong

Celia A. Schiffer

Attachment to host cells by enterohaemorrhagic Escherichia coli (EHEC) is associated with the formation of a highly organized cytoskeletal structure containing filamentous actin, termed an attaching and effacing (AE) lesion. Intimin, an outer membrane protein of EHEC, is required for the formation of AE lesions, as is Tir, a bacterial protein that is translocated into the host cell to function as a receptor for intimin. We established a yeast two-hybrid assay for intimin-Tir interaction and, after random mutagenesis, isolated 24 point mutants in intimin, which disrupted Tir recognition in this system. Analysis of 11 point mutants revealed a correlation between …


Structural And Thermodynamic Basis For The Binding Of Tmc114, A Next-Generation Human Immunodeficiency Virus Type 1 Protease Inhibitor, Nancy King, Moses Prabu-Jeyabalan, Ellen Nalivaika, Piet Wigerinck, Marie-Pierre De Bethune, Celia Schiffer Nov 2011

Structural And Thermodynamic Basis For The Binding Of Tmc114, A Next-Generation Human Immunodeficiency Virus Type 1 Protease Inhibitor, Nancy King, Moses Prabu-Jeyabalan, Ellen Nalivaika, Piet Wigerinck, Marie-Pierre De Bethune, Celia Schiffer

Celia A. Schiffer

TMC114, a newly designed human immunodeficiency virus type 1 (HIV-1) protease inhibitor, is extremely potent against both wild-type (wt) and multidrug-resistant (MDR) viruses in vitro as well as in vivo. Although chemically similar to amprenavir (APV), the potency of TMC114 is substantially greater. To examine the basis for this potency, we solved crystal structures of TMC114 complexed with wt HIV-1 protease and TMC114 and APV complexed with an MDR (L63P, V82T, and I84V) protease variant. In addition, we determined the corresponding binding thermodynamics by isothermal titration calorimetry. TMC114 binds approximately 2 orders of magnitude more tightly to the wt enzyme …


Lack Of Synergy For Inhibitors Targeting A Multi-Drug-Resistant Hiv-1 Protease, Nancy King, Laurence Melnick, Moses Prabu-Jeyabalan, Ellen Nalivaika, Shiow-Shong Yang, Yun Gao, Xiaoyi Nie, Charles Zepp, Donald Heefner, Celia Schiffer Nov 2011

Lack Of Synergy For Inhibitors Targeting A Multi-Drug-Resistant Hiv-1 Protease, Nancy King, Laurence Melnick, Moses Prabu-Jeyabalan, Ellen Nalivaika, Shiow-Shong Yang, Yun Gao, Xiaoyi Nie, Charles Zepp, Donald Heefner, Celia Schiffer

Celia A. Schiffer

The three-dimensional structures of indinavir and three newly synthesized indinavir analogs in complex with a multi-drug-resistant variant (L63P, V82T, I84V) of HIV-1 protease were determined to approximately 2.2 A resolution. Two of the three analogs have only a single modification of indinavir, and their binding affinities to the variant HIV-1 protease are enhanced over that of indinavir. However, when both modifications were combined into a single compound, the binding affinity to the protease variant was reduced. On close examination, the structural rearrangements in the protease that occur in the tightest binding inhibitor complex are mutually exclusive with the structural rearrangements …


Contribution Of Ser386 And Ser396 To Activation Of Interferon Regulatory Factor 3, Weijun Chen, Hema Srinath, Suvana Lam, Celia Schiffer, William Royer, Kai Lin Nov 2011

Contribution Of Ser386 And Ser396 To Activation Of Interferon Regulatory Factor 3, Weijun Chen, Hema Srinath, Suvana Lam, Celia Schiffer, William Royer, Kai Lin

Celia A. Schiffer

IRF-3, a member of the interferon regulatory factor (IRF) family of transcription factors, functions in innate immune defense against viral infection. Upon infection, host cell IRF-3 is activated by phosphorylation at its seven C-terminal Ser/Thr residues: (385)SSLENTVDLHISNSHPLSLTS(405). This phosphoactivation triggers IRF-3 to react with the coactivators, CREB-binding protein (CBP)/p300, to form a complex that activates target genes in the nucleus. However, the role of each phosphorylation site for IRF-3 phosphoactivation remains unresolved. To address this issue, all seven Ser/Thr potential phosphorylation sites were screened by mutational studies, size-exclusion chromatography, and isothermal titration calorimetry. Using purified proteins, we show that CBP …