Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Humans

Life Sciences

University of South Florida

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Intrinsic Disorder In Transmembrane Proteins: Roles In Signaling And Topology Prediction, Jérôme Bürgi, Bin Xue, Vladimir N Uversky, F Gisou Van Der Goot Jul 2016

Intrinsic Disorder In Transmembrane Proteins: Roles In Signaling And Topology Prediction, Jérôme Bürgi, Bin Xue, Vladimir N Uversky, F Gisou Van Der Goot

Molecular Biosciences Faculty Publications

Intrinsically disordered regions (IDRs) are peculiar stretches of amino acids that lack stable conformations in solution. Intrinsic Disorder containing Proteins (IDP) are defined by the presence of at least one large IDR and have been linked to multiple cellular processes including cell signaling, DNA binding and cancer. Here we used computational analyses and publicly available databases to deepen insight into the prevalence and function of IDRs specifically in transmembrane proteins, which are somewhat neglected in most studies. We found that 50% of transmembrane proteins have at least one IDR of 30 amino acids or more. Interestingly, these domains preferentially localize …


The Exceptionally High Reactivity Of Cys 621 Is Critical For Electrophilic Activation Of The Sensory Nerve Ion Channel Trpa1, Parmvir K. Bahia, Thomas A. Parks, Katherine R. Stanford, David A. Mitchell, Sameer Varma, Stanley M. Stevens Jr., Thomas E. Taylor-Clark May 2016

The Exceptionally High Reactivity Of Cys 621 Is Critical For Electrophilic Activation Of The Sensory Nerve Ion Channel Trpa1, Parmvir K. Bahia, Thomas A. Parks, Katherine R. Stanford, David A. Mitchell, Sameer Varma, Stanley M. Stevens Jr., Thomas E. Taylor-Clark

Molecular Biosciences Faculty Publications

Activation of the sensory nerve ion channel TRPA1 by electrophiles is the key mechanism that initiates nociceptive signaling, and leads to defensive reflexes and avoidance behaviors, during oxidative stress in mammals. TRPA1 is rapidly activated by subtoxic levels of electrophiles, but it is unclear how TRPA1 outcompetes cellular antioxidants that protect cytosolic proteins from electrophiles. Here, using physiologically relevant exposures, we demonstrate that electrophiles react with cysteine residues on mammalian TRPA1 at rates that exceed the reactivity of typical cysteines by 6,000-fold and that also exceed the reactivity of antioxidant enzymes. We show that TRPA1 possesses a complex reactive cysteine …