Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Humans

Cell and Developmental Biology

University of Kentucky

Pharmaceutical Sciences Faculty Publications

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Diverse Amide Analogs Of Sulindac For Cancer Treatment And Prevention, Bini Mathew, Judith V. Hobrath, Michele C. Connelly, R. Kiplin Guy, Robert C. Reynolds Oct 2017

Diverse Amide Analogs Of Sulindac For Cancer Treatment And Prevention, Bini Mathew, Judith V. Hobrath, Michele C. Connelly, R. Kiplin Guy, Robert C. Reynolds

Pharmaceutical Sciences Faculty Publications

Sulindac is a non-steroidal anti-inflammatory drug (NSAID) that has shown significant anticancer activity. Sulindac sulfide amide (1) possessing greatly reduced COX-related inhibition relative to sulindac displayed in vivoantitumor activity that was comparable to sulindac in a human colon tumorxenograft model. Inspired by these observations, a panel of diverse sulindac amide derivatives have been synthesized and their activity probed against three cancer cell lines (prostate, colon and breast). A neutral analog, compound 79 was identified with comparable potency relative to lead 1 and activity against a panel of lymphoblastic leukemia cell lines. Several new series also show good …


Blocking An N-Terminal Acetylation-Dependent Protein Interaction Inhibits An E3 Ligase, Daniel C. Scott, Jared T. Hammill, Jaeki Min, David Y. Rhee, Michele Connelly, Vladislav O. Sviderskiy, Deepak Bhasin, Yizhe Chen, Su-Sien Ong, Sergio C. Chai, Asli N. Goktug, Guochang Huang, Julie K. Monda, Jonathan Low, Ho Shin Kim, Joao A. Paulo, Joe R. Cannon, Anang A. Shelat, Taosheng Chen, Ian R. Kelsall, Arno F. Alpi, Vishwajeeth Pagala, Xusheng Wang, Junmin Peng, Bhuvanesh Singh, J. Wade Harper, Brenda A. Schulman, R. Kiplin Guy Aug 2017

Blocking An N-Terminal Acetylation-Dependent Protein Interaction Inhibits An E3 Ligase, Daniel C. Scott, Jared T. Hammill, Jaeki Min, David Y. Rhee, Michele Connelly, Vladislav O. Sviderskiy, Deepak Bhasin, Yizhe Chen, Su-Sien Ong, Sergio C. Chai, Asli N. Goktug, Guochang Huang, Julie K. Monda, Jonathan Low, Ho Shin Kim, Joao A. Paulo, Joe R. Cannon, Anang A. Shelat, Taosheng Chen, Ian R. Kelsall, Arno F. Alpi, Vishwajeeth Pagala, Xusheng Wang, Junmin Peng, Bhuvanesh Singh, J. Wade Harper, Brenda A. Schulman, R. Kiplin Guy

Pharmaceutical Sciences Faculty Publications

N-terminal acetylation is an abundant modification influencing protein functions. Because ∼80% of mammalian cytosolic proteins are N-terminally acetylated, this modification is potentially an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions; hence, this modification may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation–dependent interaction between an E2 conjugating enzyme (UBE2M or UBC12) and DCN1 (DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors are …