Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Heart failure

Medical Sciences

Pharmaceutical Science and Research

Articles 1 - 1 of 1

Full-Text Articles in Medicine and Health Sciences

Rapamycin Attenuates Cardiac Fibrosis In Experimental Uremic Cardiomyopathy By Reducing Marinobufagenin Levels And Inhibiting Downstream Pro-Fibrotic Signaling, Steven T. Haller Phd, Yanling Yan Phd, Christopher A. Drummond Phd, Joe Xie Md, Jiang Tian Phd, David J. Kennedy Phd, Victoria Y. Shilova Phd, Zijian Xie Phd, Jiang Liu Phd, Christopher J. Cooper Md, Deepak Malhotra Md, Phd, Joseph I. Shapiro Md, Olga V. Fedorova Phd, Alexei Y. Bagrov Md, Phd Jan 2016

Rapamycin Attenuates Cardiac Fibrosis In Experimental Uremic Cardiomyopathy By Reducing Marinobufagenin Levels And Inhibiting Downstream Pro-Fibrotic Signaling, Steven T. Haller Phd, Yanling Yan Phd, Christopher A. Drummond Phd, Joe Xie Md, Jiang Tian Phd, David J. Kennedy Phd, Victoria Y. Shilova Phd, Zijian Xie Phd, Jiang Liu Phd, Christopher J. Cooper Md, Deepak Malhotra Md, Phd, Joseph I. Shapiro Md, Olga V. Fedorova Phd, Alexei Y. Bagrov Md, Phd

Pharmaceutical Science and Research

Background: Experimental uremic cardiomyopathy causes cardiac fibrosis and is causally related to the increased circulating levels of the cardiotonic steroid, marinobufagenin (MBG), which signals through Na/K‐ATPase. Rapamycin is an inhibitor of the serine/threonine kinase mammalian target of rapamycin (mTOR) implicated in the progression of many different forms of renal disease. Given that Na/K‐ATPase signaling is known to stimulate the mTOR system, we speculated that the ameliorative effects of rapamycin might influence this pathway.

Methods and Results: Biosynthesis of MBG by cultured human JEG‐3 cells is initiated by CYP27A1, which is also a target for rapamycin. It was demonstrated that 1 …