Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Medicine and Health Sciences

A Dna-Peptide Crosslink (Dpc) Increases Mutagenicity In Sos-Induced Escherichia Coli, Alessandra Bassani May 2023

A Dna-Peptide Crosslink (Dpc) Increases Mutagenicity In Sos-Induced Escherichia Coli, Alessandra Bassani

Honors Scholar Theses

Bacteria, such as Escherichia coli, have an inducible system in response to DNA damage termed the SOS response. This system is activated when the replicative DNA polymerase (Pol) III encounters a lesion, uncouples from DNA helicase, and single-stranded DNA (ssDNA) accumulates at the replication fork. In this study, we investigated DNA-peptide crosslink (DpC), a common lesion that results from cross-linking of proteins or peptides, UV irradiation, and alkylating agents. To increase survival following formation of a lesion, the SOS response can utilize homologous recombination, translesion synthesis (TLS), or excision repair. With TLS, the levels of DNA Pol II, IV, …


Identification Of Translesion Synthesis Inhibitors That Target Rev7/Rev3 Protein-Protein Interactions, Seema Patel May 2022

Identification Of Translesion Synthesis Inhibitors That Target Rev7/Rev3 Protein-Protein Interactions, Seema Patel

Honors Scholar Theses

Translesion synthesis (TLS) is a cellular mechanism utilized by cancer cells to tolerate DNA damage caused by chemotherapeutics, like cisplatin, by replicating past unrepaired lesions. This increases the rate of mutations, which leads to the emergence of drug-resistant cancer cells. Preliminary studies have shown that disrupting the protein-protein interactions (PPI) in the TLS heteroprotein complex increases cells’ sensitivity to first-line genotoxic chemotherapy, illustrating how inhibiting TLS assembly and function can significantly increase cancer cell death. These results underscore the therapeutic potential of targeting TLS PPI. Our current work in this area is focusing on inhibitors capable of disrupting the Rev7/Rev3 …


Differential Iron Regulatory Genetics In 2d & 3d Culture Of Breast Cancer Cells, Tyler Hanna, Suzy Torti Ph. D, Frank Torti M.D., Mph, Nicole Farra Ph. D. May 2019

Differential Iron Regulatory Genetics In 2d & 3d Culture Of Breast Cancer Cells, Tyler Hanna, Suzy Torti Ph. D, Frank Torti M.D., Mph, Nicole Farra Ph. D.

Honors Scholar Theses

The iron regulatory axis has consistently been shown to be perturbed in cancer cell lines relative to non-cancerous cell lines. As cancer cells rapidly divide and grow, they require iron to fuel many intracellular processes, including DNA replication and protein synthesis. Three-dimensional cell culture is an increasingly popular method of culture that purportedly more accurately mimics the in vivo microenvironment of cancers over traditional two-dimensional culture. This project was prompted by previous lab results to investigate differential iron regulatory gene expression in 2D and 3D spheroid culture models. We replicated the findings that the gene hepcidin is induced in 3D …


The Systemic Quantification Of Immune Cell Populations In Various Murine Models: How Age, Tumor Burden, And Immunotherapy Affect The Immune Response, Kavita Sinha May 2018

The Systemic Quantification Of Immune Cell Populations In Various Murine Models: How Age, Tumor Burden, And Immunotherapy Affect The Immune Response, Kavita Sinha

Honors Scholar Theses

Immunotherapy as a form of cancer treatment has become increasingly popular in the past few decades. Researchers have worked to figure out how to best use the body’s natural defense mechanism, the immune system, to fight off and destroy cancer cells. In particular, the goal has been to manipulate checkpoint blockades such as CTLA-4 and PD-1 in order to take the breaks off of the immune system, allowing for a prolonged immune response to the cancer. This work has led to the development of human versions of anti-CTLA4 antibodies (ipilimumab, tremelimumab) and anti-PD1 antibodies (pembrolizumab and Nivolumab) that are currently …


Genotype-Specific Insertion Of Cytotoxic Genetic Elements Into Cancer Cells, Ryan Englander Apr 2018

Genotype-Specific Insertion Of Cytotoxic Genetic Elements Into Cancer Cells, Ryan Englander

University Scholar Projects

The new gene editing system CRISPR/Cas9, composed of a complex composed of a guide RNA and the Cas9 endonuclease, promises to revolutionize biological research and potentially allow clinicians to directly modify patient DNA in vivo. While its applications in the treatment of genetic diseases and in modifying immune cells for immunotherapy are currently being explored, CRISPR/Cas9’s potential utility as a modular system for targeting tumor-specific mutated sequences has not as of yet been explored. While CRISPR/Cas9 is specific enough to target small insertions and deletions or gross chromosomal rearrangements, it is not specific enough to reliably restrict editing to …


Characterization And Target Identification Of Ak301: A Novel Mitotic Arrest Agent, Michael J. Bond, Avijeet S. Chopra, Marina Bleiler, Michelle Yeagley, Eric Scocchera Apr 2016

Characterization And Target Identification Of Ak301: A Novel Mitotic Arrest Agent, Michael J. Bond, Avijeet S. Chopra, Marina Bleiler, Michelle Yeagley, Eric Scocchera

University Scholar Projects

The Giardina Laboratory has recently identified AK301 as a novel mitotic arrest agent. This work aimed to characterize the arrest state induced by AK301 (EC50 ~ 150nM) and identify the cellar targets responsible for the arrest. It was found that AK301 arrest is readily reversible upon withdrawal of AK301. Cells that slip from mitosis after removal of AK301 are sensitized to apoptosis. This was found to be unique for AK301 when compared to other mitotic arrest agents like colchicine, vincristine, and BI2536. Arrested cells were found to have increased ATM activity as well as an upregulation of p53 and …


Current Therapeutic Role And Medicinal Potential Of Scutellaria Barbata In Traditional Chinese Medicine And Western Research, Geyang Tao, Marcy J. Balunas Apr 2016

Current Therapeutic Role And Medicinal Potential Of Scutellaria Barbata In Traditional Chinese Medicine And Western Research, Geyang Tao, Marcy J. Balunas

Honors Scholar Theses

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellaria barbata is a common herb in Traditional Chinese Medicine (TCM) most often used to treat cancer. S. barbata has been found to exhibit efficacy both in vitro and in vivo on a variety of cancer types. Similarly encouraging results have been shown in patients with metastatic breast cancer from Phase Ia and Ib clinical trials. This study aims to elucidate the current use of S. barbata by TCM practitioners and in current Western research.

MATERIALS AND METHODS: Semi-structured interviews were conducted with fifteen TCM practitioners in Beijing and Nanjing, China to understand their clinical use of …


Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer May 2014

Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer

University Scholar Projects

Somatic mutations may drive tumorigenesis or lead to new, immunogenic epitopes (neoantigens). The immune system is thought to represses neoplastic growths through the recognition of neoantigens presented only by tumor cells. To study mutations as well as the immune response to mutation-generated antigens, we have created a conditional knockin mouse line with a gene encoding, 5’ to 3’, yellow fluorescent protein (YFP), ovalbumin (which is processed to the immunologically recognizable peptide, SIINFEKL), and cyan fluorescent protein (CFP), or, YFP-ovalbumin-CFP. A frame shift mutation has been created at the 5’ end of the ovalbumin gene, hence YFP should always be expressed, …


Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer May 2014

Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer

Honors Scholar Theses

Somatic mutations may drive tumorigenesis or lead to new, immunogenic epitopes (neoantigens). The immune system is thought to represses neoplastic growths through the recognition of neoantigens presented only by tumor cells. To study mutations as well as the immune response to mutation-generated antigens, we have created a conditional knockin mouse line with a gene encoding, 5’ to 3’, yellow fluorescent protein (YFP), ovalbumin (which is processed to the immunologically recognizable peptide, SIINFEKL), and cyan fluorescent protein (CFP), or, YFP-ovalbumin-CFP. A frame shift mutation has been created at the 5’ end of the ovalbumin gene, hence YFP should always be expressed, …


Deciphering Phosphotyrosine-Dependent Signaling Networks In Cancer By Sh2 Profiling, Kazuya Machida May 2012

Deciphering Phosphotyrosine-Dependent Signaling Networks In Cancer By Sh2 Profiling, Kazuya Machida

UCHC Articles - Research

It has been a decade since the introduction of SH2 profiling, a modular domain-based molecular diagnostics tool. This review covers the original concept of SH2 profiling, different analytical platforms, and their applications, from the detailed analysis of single proteins to broad screening in translational research. Illustrated by practical examples, we discuss the uniqueness and advantages of the approach as well as its limitations and challenges. We provide guidance for basic researchers and oncologists who may consider SH2 profiling in their respective cancer research, especially for those focusing on tyrosine phosphoproteomics. SH2 profiling can serve as an alternative phosphoproteomics tool to …


Pharmacological And Therapeutic Effects Of A3 Adenosine Receptor (A3ar) Agonists, Bruce T. Liang Apr 2012

Pharmacological And Therapeutic Effects Of A3 Adenosine Receptor (A3ar) Agonists, Bruce T. Liang

UCHC Articles - Research

The Gi-coupled A3 adenosine receptor (A3AR) mediates anti-inflammatory, anticancer and anti-ischemic protective effects. The receptor is overexpressed in inflammatory and cancer cells, while low expression is found in normal cells, rendering the A3AR as a potential therapeutic target. Highly selective A3AR agonists have been synthesized and molecular recognition in the binding site has been characterized. The present review summarizes preclinical and clinical human studies demonstrating that A3AR agonists induce specific anti-inflammatory and anticancer effects via a molecular mechanism that entails modulation of the Wnt and the NF-κB signal transduction …


Therapeutic Touch And Cancer Cells, Gloria A. Gronowicz Jan 2011

Therapeutic Touch And Cancer Cells, Gloria A. Gronowicz

UCHC Graduate School Masters Theses 2003 - 2010

Energy medicine therapies based on a human biofield have been practiced for thousands of years and can trace their origin in Ayurveda. Our goal was to determine if Therapeutic Touch (TT), a more recently developed energy medicine practice, had any effects on cancer cells. Previous work in our laboratory demonstrated that TT significantly increased the growth of normal human osteoblasts and increased the synthesis of bone matrix proteins and mineralization in cell culture. In this study as was practiced in our previous studies, TT was performed twice a week for 10 minutes and was compared to untreated cultures and 'placebo-treated" …


Mitochondria-Centric Activation Induced Cell Death Of Cytolytic T Lymphocytes And Its Implications For Cancer Immunotherapy, Arvind Chhabra Jun 2010

Mitochondria-Centric Activation Induced Cell Death Of Cytolytic T Lymphocytes And Its Implications For Cancer Immunotherapy, Arvind Chhabra

UCHC Articles - Research

Premature death of the adoptively transferred cytolytic T lymphocytes (CTL) by means of activation induced cell death (AICD) represents one of the major constraints in devising an effective anti-cancer immune intervention strategy. Understanding the mechanism of AICD is, therefore, critical for developing methods to interfere with this death process. Although the existing paradigm on AICD centers around the initiation of the cascade of events originating from the engagement of death receptors leading to the activation of effector caspases and eventually resulting in cell death, recent findings have questioned the universal role of caspases as the cell death executioners. We here …


Management Of Oral Mucositis In Patients With Cancer, Rajesh V. Lalla, Douglas E. Peterson Jan 2008

Management Of Oral Mucositis In Patients With Cancer, Rajesh V. Lalla, Douglas E. Peterson

UCHC Articles - Research

Oral mucositis refers to erythematous and ulcerative lesions of the oral mucosa observed in patients with cancer being treated with chemotherapy, and/or with radiation therapy to fields involving the oral cavity. Lesions of oral mucositis are often very painful and compromise nutrition and oral hygiene as well as increase risk for local and systemic infection. Mucositis can also involve other areas of the alimentary tract; for example, gastrointestinal (GI) mucositis can manifest as diarrhea. Thus, mucositis is a highly significant and sometimes dose-limiting complication of cancer therapy.

.