Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Medicine and Health Sciences

Editorial: Hallmark Of Cancer: Reprogramming Of Cellular Metabolism, Baljinder Kaur, Yahya Sohrabi, Abhinav Achreja, Michael P. Lisanti, Ubaldo Emilio Martinez-Outshoorn Jan 2023

Editorial: Hallmark Of Cancer: Reprogramming Of Cellular Metabolism, Baljinder Kaur, Yahya Sohrabi, Abhinav Achreja, Michael P. Lisanti, Ubaldo Emilio Martinez-Outshoorn

Department of Medical Oncology Faculty Papers

No abstract provided.


Msdrp: A Deep Learning Model Based On Multisource Data For Predicting Drug Response, Haochen Zhao, Xiaoyu Zhang, Qichang Zhao, Yaohang Li, Jianxin Wang Jan 2023

Msdrp: A Deep Learning Model Based On Multisource Data For Predicting Drug Response, Haochen Zhao, Xiaoyu Zhang, Qichang Zhao, Yaohang Li, Jianxin Wang

Computer Science Faculty Publications

Motivation: Cancer heterogeneity drastically affects cancer therapeutic outcomes. Predicting drug response in vitro is expected to help formulate personalized therapy regimens. In recent years, several computational models based on machine learning and deep learning have been proposed to predict drug response in vitro. However, most of these methods capture drug features based on a single drug description (e.g. drug structure), without considering the relationships between drugs and biological entities (e.g. target, diseases, and side effects). Moreover, most of these methods collect features separately for drugs and cell lines but fail to consider the pairwise interactions between drugs and cell …


The Future Of Targeted Kinase Inhibitors In Melanoma, Signe Caksa, Usman Baqai, A E Aplin May 2022

The Future Of Targeted Kinase Inhibitors In Melanoma, Signe Caksa, Usman Baqai, A E Aplin

Department of Cancer Biology Faculty Papers

Melanoma is a cancer of the pigment-producing cells of the body and its incidence is rising. Targeted inhibitors that act against kinases in the MAPK pathway are approved for BRAF-mutant metastatic cutaneous melanoma and increase patients' survival. Response to these therapies is limited by drug resistance and is less durable than with immune checkpoint inhibition. Conversely, rare melanoma subtypes have few therapeutic options for advanced disease and MAPK pathway targeting agents show minimal anti-tumor effects. Nevertheless, there is a future for targeted kinase inhibitors in melanoma: in new applications such as adjuvant or neoadjuvant therapy and in novel combinations with …


The Role Of Decorin And Biglycan Signaling In Tumorigenesis, Valentina Diehl, Lisa Sophie Huber, Jonel Trebicka, Malgorzata Wygrecka, Renato V. Iozzo, Liliana Schaefer Nov 2021

The Role Of Decorin And Biglycan Signaling In Tumorigenesis, Valentina Diehl, Lisa Sophie Huber, Jonel Trebicka, Malgorzata Wygrecka, Renato V. Iozzo, Liliana Schaefer

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

The complex and adaptive nature of malignant neoplasm constitute a major challenge for the development of effective anti-oncogenic therapies. Emerging evidence has uncovered the pivotal functions exerted by the small leucine-rich proteoglycans, decorin and biglycan, in affecting tumor growth and progression. In their soluble forms, decorin and biglycan act as powerful signaling molecules. By receptor-mediated signal transduction, both proteoglycans modulate key processes vital for tumor initiation and progression, such as autophagy, inflammation, cell-cycle, apoptosis, and angiogenesis. Despite of their structural homology, these two proteoglycans interact with distinct cell surface receptors and thus modulate distinct signaling pathways that ultimately affect cancer …


Comparative Molecular Transporter Properties Of Cyclic Peptides Containing Tryptophan And Arginine Residues Formed Through Disulfide Cyclization, Eman H. M. Mohammed, Dindyal Mandal, Saghar Mozaffari, Magdy Abdel-Hamied Zahran, Amany Mostafa Osman, Rakesh Kumar Tiwari, Keykavous Parang Jun 2020

Comparative Molecular Transporter Properties Of Cyclic Peptides Containing Tryptophan And Arginine Residues Formed Through Disulfide Cyclization, Eman H. M. Mohammed, Dindyal Mandal, Saghar Mozaffari, Magdy Abdel-Hamied Zahran, Amany Mostafa Osman, Rakesh Kumar Tiwari, Keykavous Parang

Pharmacy Faculty Articles and Research

We have previously reported cyclic cell-penetrating peptides [WR]5 and [WR]4 as molecular transporters. To optimize further the utility of our developed peptides for targeted therapy in cancer cells using the redox condition, we designed a new generation of peptides and evaluated their cytotoxicity as well as uptake behavior against different cancer cell lines. Thus, cyclic [C(WR)xC] and linear counterparts (C(WR)xC), where x = 4–5, were synthesized using Fmoc/tBu solid-phase peptide synthesis, purified, and characterized. The compounds did not show any significant cytotoxicity (at 25 µM) against ovarian (SK-OV-3), leukemia (CCRF-CEM), gastric adenocarcinoma (CRL-1739), breast …


Genetic Relationships And Therapeutic Options For Relapsed Acute Lymphoblastic Leukemia, Hailie Shertzer Apr 2020

Genetic Relationships And Therapeutic Options For Relapsed Acute Lymphoblastic Leukemia, Hailie Shertzer

Senior Honors Theses

Acute lymphoblastic leukemia (ALL) is the most common form of cancer among children and can be lethal to the adult population. Though 80% of patients with ALL reach complete remission after treatment, about 20% of those diagnosed fail to remain cancer-free. Genetic rearrangements are the hallmark of relapsed ALL, but the mechanism by which these rearrangements occur is still unclear. Recent research suggests these mutations may be detectable during initial diagnosis. If researchers are able to accurately assess the probability of relapse during diagnosis by analyzing the genome of the leukemic cells, the likelihood of administering effective therapy would increase. …


Interaction Of The Oncoprotein Transcription Factor Myc With Its Chromatin Cofactor Wdr5 Is Essential For Tumor Maintenance., Lance R. Thomas, Clare M. Adams, Jing Wang, April M. Weissmiller, Joy Creighton, Shelly L. Lorey, Qi Liu, Stephen W. Fesik, Christine M. Eischen, William P. Tansey Dec 2019

Interaction Of The Oncoprotein Transcription Factor Myc With Its Chromatin Cofactor Wdr5 Is Essential For Tumor Maintenance., Lance R. Thomas, Clare M. Adams, Jing Wang, April M. Weissmiller, Joy Creighton, Shelly L. Lorey, Qi Liu, Stephen W. Fesik, Christine M. Eischen, William P. Tansey

Department of Cancer Biology Faculty Papers

The oncoprotein transcription factor MYC is overexpressed in the majority of cancers. Key to its oncogenic activity is the ability of MYC to regulate gene expression patterns that drive and maintain the malignant state. MYC is also considered a validated anticancer target, but efforts to pharmacologically inhibit MYC have failed. The dependence of MYC on cofactors creates opportunities for therapeutic intervention, but for any cofactor this requires structural understanding of how the cofactor interacts with MYC, knowledge of the role it plays in MYC function, and demonstration that disrupting the cofactor interaction will cause existing cancers to regress. One cofactor …


Differential Iron Regulatory Genetics In 2d & 3d Culture Of Breast Cancer Cells, Tyler Hanna, Suzy Torti Ph. D, Frank Torti M.D., Mph, Nicole Farra Ph. D. May 2019

Differential Iron Regulatory Genetics In 2d & 3d Culture Of Breast Cancer Cells, Tyler Hanna, Suzy Torti Ph. D, Frank Torti M.D., Mph, Nicole Farra Ph. D.

Honors Scholar Theses

The iron regulatory axis has consistently been shown to be perturbed in cancer cell lines relative to non-cancerous cell lines. As cancer cells rapidly divide and grow, they require iron to fuel many intracellular processes, including DNA replication and protein synthesis. Three-dimensional cell culture is an increasingly popular method of culture that purportedly more accurately mimics the in vivo microenvironment of cancers over traditional two-dimensional culture. This project was prompted by previous lab results to investigate differential iron regulatory gene expression in 2D and 3D spheroid culture models. We replicated the findings that the gene hepcidin is induced in 3D …


Tumor-Derived Extracellular Vesicles Require Β1 Integrins To Promote Anchorage-Independent Growth., Rachel M. Derita, Aejaz Sayeed, Vaughn Garcia, Shiv Ram Krishn, Christopher D. Shields, Srawasti Sarker, Andrea Friedman, Peter Mccue, Sudheer Kumar Molugu, Ulrich Rodeck, Adam P. Dicker, Lucia R. Languino Apr 2019

Tumor-Derived Extracellular Vesicles Require Β1 Integrins To Promote Anchorage-Independent Growth., Rachel M. Derita, Aejaz Sayeed, Vaughn Garcia, Shiv Ram Krishn, Christopher D. Shields, Srawasti Sarker, Andrea Friedman, Peter Mccue, Sudheer Kumar Molugu, Ulrich Rodeck, Adam P. Dicker, Lucia R. Languino

Department of Cancer Biology Faculty Papers

The β1 integrins, known to promote cancer progression, are abundant in extracellular vesicles (EVs). We investigated whether prostate cancer (PrCa) EVs affect anchorage-independent growth and whether β1 integrins are required for this effect. Specifically using a cell-line-based genetic rescue and an in vivo PrCa model, we show that gradient-purified small EVs (sEVs) from either cancer cells or blood from tumor-bearing TRAMP (transgenic adenocarcinoma of the mouse prostate) mice promote anchorage-independent growth of PrCa cells. In contrast, sEVs from cultured PrCa cells harboring a short hairpin RNA to β1, from wild-type mice or from TRAMP mice carrying a β1 conditional ablation …


A Lin28b Tumor-Specific Transcript In Cancer, Weijie Guo, Zhixiang Hu, Yichao Bao, Yuchen Li, Shengli Li, Qiupeng Zheng, Dongbin Lyu, Di Chen, Tao Yu, Yan Li, Xiaodong Zhu, Jie Ding, Yingjun Zhao, Xianghuo He, Shenglin Huang Feb 2018

A Lin28b Tumor-Specific Transcript In Cancer, Weijie Guo, Zhixiang Hu, Yichao Bao, Yuchen Li, Shengli Li, Qiupeng Zheng, Dongbin Lyu, Di Chen, Tao Yu, Yan Li, Xiaodong Zhu, Jie Ding, Yingjun Zhao, Xianghuo He, Shenglin Huang

Markey Cancer Center Faculty Publications

The diversity and complexity of the cancer transcriptome may contain transcripts unique to the tumor environment. Here, we report a LIN28B variant, LIN28B-TST, which is specifically expressed in hepatocellular carcinoma (HCC) and many other cancer types. Expression of LIN28B-TST is associated with significantly poor prognosis in HCC patients. LIN28B-TST initiates from a de novo alternative transcription initiation site that harbors a strong promoter regulated by NFYA but not c-Myc. Demethylation of the LIN28B-TST promoter might be a prerequisite for its transcription and transcriptional regulation. LIN28B-TST encodes a protein isoform with additional N-terminal amino acids and is critical for cancer …


A Simple And Accurate Rule-Based Modeling Framework For Simulation Of Autocrine/Paracrine Stimulation Of Glioblastoma Cell Motility And Proliferation By L1cam In 2-D Culture., Justin Caccavale, David Fiumara, Michael Stapf, Liedeke Sweitzer, Hannah J. Anderson, Jonathan Gorky, Prasad Dhurjati, Deni S. Galileo Dec 2017

A Simple And Accurate Rule-Based Modeling Framework For Simulation Of Autocrine/Paracrine Stimulation Of Glioblastoma Cell Motility And Proliferation By L1cam In 2-D Culture., Justin Caccavale, David Fiumara, Michael Stapf, Liedeke Sweitzer, Hannah J. Anderson, Jonathan Gorky, Prasad Dhurjati, Deni S. Galileo

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

BACKGROUND: Glioblastoma multiforme (GBM) is a devastating brain cancer for which there is no known cure. Its malignancy is due to rapid cell division along with high motility and invasiveness of cells into the brain tissue. Simple 2-dimensional laboratory assays (e.g., a scratch assay) commonly are used to measure the effects of various experimental perturbations, such as treatment with chemical inhibitors. Several mathematical models have been developed to aid the understanding of the motile behavior and proliferation of GBM cells. However, many are mathematically complicated, look at multiple interdependent phenomena, and/or use modeling software not freely available to the research …


Yap And The Hippo Pathway In Pediatric Cancer., Atif Ahmed, Abdalla D. Mohamed, Melissa Gener, Weijie Li, Eugenio Taboada Jan 2017

Yap And The Hippo Pathway In Pediatric Cancer., Atif Ahmed, Abdalla D. Mohamed, Melissa Gener, Weijie Li, Eugenio Taboada

Manuscripts, Articles, Book Chapters and Other Papers

The Hippo pathway is an important signaling pathway that controls cell proliferation and apoptosis. It is evolutionarily conserved in mammals and is stimulated by cell-cell contact, inhibiting cell proliferation in response to increased cell density. During early embryonic development, the Hippo signaling pathway regulates organ development and size, and its functions result in the coordinated balance between proliferation, apoptosis, and differentiation. Its principal effectors, YAP and TAZ, regulate signaling by the embryonic stem cells and determine cell fate and histogenesis. Dysfunction of this pathway contributes to cancer development in adults and children. Emerging studies have shed light on the upregulation …


Challenges Of Adoptive (T-)Cell Transfer Immunotherapy For Cancer, Aaron Volk Feb 2016

Challenges Of Adoptive (T-)Cell Transfer Immunotherapy For Cancer, Aaron Volk

Biology: Student Scholarship & Creative Works

Background and significance: The rebirth of the theory of immunosurveillance in 2001 rejuvenated interest in anticancer immunotherapies. In particular, T-cell-based therapies have garnered substantial interest due to the robustness and tumor antigen-specific cytotoxicity of T-cell anticancer immune responses.

Hypothesis: The efficacy of adoptive cell transfer (ACT) T-cell immunotherapy could significantly improve and gain widespread approval if future innovations in ACT-based approaches account for the pro- and antitumoral properties of non-CD8+ lineages of effector T-cells, evasion of T-cell antitumor immunity, and tumor-induced suppression of antitumor immunity.

Problem Analysis: Despite numerous reports of highly successful ACT-based clinical trials, no such therapy …


Identification Of Potential Synthetic Lethal Genes To P53 Using A Computational Biology Approach, Xiaosheng Wang, Richard Simon Jan 2013

Identification Of Potential Synthetic Lethal Genes To P53 Using A Computational Biology Approach, Xiaosheng Wang, Richard Simon

Journal Articles: Genetics, Cell Biology & Anatomy

BACKGROUND:

Identification of genes that are synthetic lethal to p53 is an important strategy for anticancer therapy as p53 mutations have been reported to occur in more than half of all human cancer cases. Although genome-wide RNAi screening is an effective approach to finding synthetic lethal genes, it is costly and labor-intensive.

METHODS:

To illustrate this approach, we identified potentially druggable genes synthetically lethal for p53 using three microarray datasets for gene expression profiles of the NCI-60 cancer cell lines, one next-generation sequencing (RNA-Seq) dataset from the Cancer Genome Atlas (TCGA) project, and one gene expression data from the Cancer …


Proline-Rich Tyrosine Kinase 2 (Pyk2) Regulates Igf-I-Induced Cell Motility And Invasion Of Urothelial Carcinoma Cells, Marco Genua, Shi-Qiong Xu, Simone Buraschi, Stephen C. Peiper, Leonard G. Gomella, Antonio Belfiore, Renato V. Iozzo, Andrea Morrione Jun 2012

Proline-Rich Tyrosine Kinase 2 (Pyk2) Regulates Igf-I-Induced Cell Motility And Invasion Of Urothelial Carcinoma Cells, Marco Genua, Shi-Qiong Xu, Simone Buraschi, Stephen C. Peiper, Leonard G. Gomella, Antonio Belfiore, Renato V. Iozzo, Andrea Morrione

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

The insulin-like growth factor receptor I (IGF-IR) plays an essential role in transformation by promoting cell growth and protecting cancer cells from apoptosis. We have recently demonstrated that the IGF-IR is overexpressed in invasive bladder cancer tissues and promotes motility and invasion of urothelial carcinoma cells. These effects require IGF-I-induced Akt- and MAPK-dependent activation of paxillin. The latter co-localizes with focal adhesion kinases (FAK) at dynamic focal adhesions and is critical for promoting motility of urothelial cancer cells. FAK and its homolog Proline-rich tyrosine kinase 2 (Pyk2) modulate paxillin activation; however, their role in regulating IGF-IR-dependent signaling and motility in …


The Expression Of Ecotropic Virus Integration Site-1 In Seven Cancer Cell Lines, Wendy Bindeman '12 Feb 2012

The Expression Of Ecotropic Virus Integration Site-1 In Seven Cancer Cell Lines, Wendy Bindeman '12

Student Publications & Research

The ecotropic virus integration site-1 (EVI1) gene is a transcriptional repressor implicated in the control of cell proliferation and frequently over-expressed in cancerous cells. I investigated the expression of this gene across seven cancer cell lines of varying morphologies. The tested lines included leukemia lines Kasumi-3, U937, MOLT-4, and CEM, breast cancer line MCF7, colorectal cancer line HT-29, and glioblastoma line M059K. Kasumi-3 and HT-29 are documented to have high EVI1 expression. Protein concentrations were normalized with respect to actin using SDS-PAGE and Western blotting. Western blots for EVI1 showed expression of an unidentified protein with a molecular weight of …


Proteoglycans In Health And Disease: Novel Regulatory Signaling Mechanisms Evoked By The Small Leucine-Rich Proteoglycans., Renato V. Iozzo, Liliana Schaefer Oct 2010

Proteoglycans In Health And Disease: Novel Regulatory Signaling Mechanisms Evoked By The Small Leucine-Rich Proteoglycans., Renato V. Iozzo, Liliana Schaefer

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

The small leucine-rich proteoglycans (SLRPs) are involved in many aspects of mammalian biology, both in health and disease. They are now being recognized as key signaling molecules with an expanding repertoire of molecular interactions affecting not only growth factors, but also various receptors involved in controlling cell growth, morphogenesis and immunity. The complexity of SLRP signaling and the multitude of affected signaling pathways can be reconciled with a hierarchical affinity-based interaction of various SLRPs in a cell- and tissue-specific context. Here, we review this interacting network, describe new relationships of the SLRPs with tyrosine kinase and Toll-like receptors and critically …


Inference Of Cancer-Specific Gene Regulatory Networks Using Soft Computing Rules., Xiaosheng Wang, Osamu Gotoh Mar 2010

Inference Of Cancer-Specific Gene Regulatory Networks Using Soft Computing Rules., Xiaosheng Wang, Osamu Gotoh

Journal Articles: Genetics, Cell Biology & Anatomy

Perturbations of gene regulatory networks are essentially responsible for oncogenesis. Therefore, inferring the gene regulatory networks is a key step to overcoming cancer. In this work, we propose a method for inferring directed gene regulatory networks based on soft computing rules, which can identify important cause-effect regulatory relations of gene expression. First, we identify important genes associated with a specific cancer (colon cancer) using a supervised learning approach. Next, we reconstruct the gene regulatory networks by inferring the regulatory relations among the identified genes, and their regulated relations by other genes within the genome. We obtain two meaningful findings. One …


Expression And Function Of Hypoxia Inducible Factor-1 Alpha In Human Melanoma Under Non-Hypoxic Conditions, Caroline N. Mills, Sandeep S. Joshi, Richard M. Niles Nov 2009

Expression And Function Of Hypoxia Inducible Factor-1 Alpha In Human Melanoma Under Non-Hypoxic Conditions, Caroline N. Mills, Sandeep S. Joshi, Richard M. Niles

Biochemistry and Microbiology

Background

Hypoxia inducible factor-1 alpha (HIF-1α) protein is rapidly degraded under normoxic conditions. When oxygen tensions fall HIF-1α protein stabilizes and transactivates genes involved in adaptation to hypoxic conditions. We have examined the normoxic expression of HIF-1α RNA and protein in normal human melanocytes and a series of human melanoma cell lines isolated from radial growth phase (RGP), vertical growth phase (VGP) and metastatic (MET) melanomas.

Results

HIF-1α mRNA and protein was increased in RGP vs melanocytes, VGP vs RGP and MET vs VGP melanoma cell lines. We also detected expression of a HIF-1α mRNA splice variant that lacks part …


Basement Membrane Proteoglycans: Modulators Par Excellence Of Cancer Growth And Angiogenesis., Renato V. Iozzo, Jason J. Zoeller, Alexander Nyström May 2009

Basement Membrane Proteoglycans: Modulators Par Excellence Of Cancer Growth And Angiogenesis., Renato V. Iozzo, Jason J. Zoeller, Alexander Nyström

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Proteoglycans located in basement membranes, the nanostructures underling epithelial and endothelial layers, are unique in several respects. They are usually large, elongated molecules with a collage of domains that share structural and functional homology with numerous extracellular matrix proteins, growth factors and surface receptors. They mainly carry heparan sulfate side chains and these contribute not only to storing and preserving the biological activity of various heparan sulfate-binding cytokines and growth factors, but also in presenting them in a more "active configuration" to their cognate receptors. Abnormal expression or deregulated function of these proteoglycans affect cancer and angiogenesis, and are critical …


The Inflammatory And Normal Transcriptome Of Mouse Bladder Detrusor And Mucosa, Marcia R. Saban, Helen L. Hellmich, Mary Turner, Ngoc-Bich Nguyen, Rajanikanth Vadigepalli, David W. Dyer, Robert E. Hurst, Michael Centola, Ricardo Saban Jan 2006

The Inflammatory And Normal Transcriptome Of Mouse Bladder Detrusor And Mucosa, Marcia R. Saban, Helen L. Hellmich, Mary Turner, Ngoc-Bich Nguyen, Rajanikanth Vadigepalli, David W. Dyer, Robert E. Hurst, Michael Centola, Ricardo Saban

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Background

An organ such as the bladder consists of complex, interacting set of tissues and cells. Inflammation has been implicated in every major disease of the bladder, including cancer, interstitial cystitis, and infection. However, scanty is the information about individual detrusor and urothelium transcriptomes in response to inflammation. Here, we used suppression subtractive hybridizations (SSH) to determine bladder tissue- and disease-specific genes and transcriptional regulatory elements (TRE)s. Unique TREs and genes were assembled into putative networks.

Results

It was found that the control bladder mucosa presented regulatory elements driving genes such as myosin light chain phosphatase and calponin 1 that …