Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Apoptosis

Electronic Theses and Dissertations

Immunology and Infectious Disease

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Investigating The Pi3k/Akt/Atm Pathway, Telomeric Dna Damage, T Cell Death, And Crispr/Cas9-Mediated Gene Editing During Acute And Chronic Hiv Infection, Sushant Khanal Dec 2022

Investigating The Pi3k/Akt/Atm Pathway, Telomeric Dna Damage, T Cell Death, And Crispr/Cas9-Mediated Gene Editing During Acute And Chronic Hiv Infection, Sushant Khanal

Electronic Theses and Dissertations

Human Immunodeficiency Virus (HIV) infection initiates major metabolic and cell- survival complications. Anti-retroviral therapy (ART) is the current approach to suppress active HIV replication to a level of undetected viral load, but it is not a curative approach. Newer and sophisticated gene editing technologies could indeed be a potent antiviral therapy to achieve a clinical sterilization/cure of HIV infection. Chronic HIV patients, even under a successful ART regimen, exhibit a low-grade inflammation, immune senescence, premature aging, telomeric DNA attrition, T cell apoptosis, and cellular homeostasis. In this dissertation, we investigated CD4 T cell homeostasis, degree of T cell apoptosis, an …


The Comparison Of Effects Of Synthetic And Natural Arachidin-3 On Rotavirus Infected Cells, Rebekah Napier-Jameson Aug 2018

The Comparison Of Effects Of Synthetic And Natural Arachidin-3 On Rotavirus Infected Cells, Rebekah Napier-Jameson

Electronic Theses and Dissertations

Rotavirus (RV) causes severe, life-threatening diarrhea, in infants, young children and immunocompromised adults. There are several effective vaccines for young children, however they are strain specific and are not protective against many RV strains in developing countries. Therefore, it is important to investigate anti-RV therapeutic agents. Our laboratory has shown arachidin-1 (A1) and arachadin-3 (A3) significantly inhibit RV replication in two cell lines, however the molecular mechanism(s) of action are not known. A synthetic molecule of A3 (sA3) has been produced, but its’ antiviral effects have not been examined. Our hypothesis is that sA3 produces the same effects on RV-infected …