Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Slob, A Slowpoke Channel Binding Protein, Regulates Insulin Pathway Signaling And Metabolism In Drosophila., Amanda L. Sheldon, Jiaming Zhang, Hong Fei, Irwin B Levitan Aug 2011

Slob, A Slowpoke Channel Binding Protein, Regulates Insulin Pathway Signaling And Metabolism In Drosophila., Amanda L. Sheldon, Jiaming Zhang, Hong Fei, Irwin B Levitan

Department of Neuroscience Faculty Papers

There is ample evidence that ion channel modulation by accessory proteins within a macromolecular complex can regulate channel activity and thereby impact neuronal excitability. However, the downstream consequences of ion channel modulation remain largely undetermined. The Drosophila melanogaster large conductance calcium-activated potassium channel SLOWPOKE (SLO) undergoes modulation via its binding partner SLO-binding protein (SLOB). Regulation of SLO by SLOB influences the voltage dependence of SLO activation and modulates synaptic transmission. SLO and SLOB are expressed especially prominently in median neurosecretory cells (mNSCs) in the pars intercerebralis (PI) region of the brain; these cells also express and secrete Drosophila insulin like …


Sonic Hedgehog Dependent Phosphorylation By Ck1Α And Grk2 Is Required For Ciliary Accumulation And Activation Of Smoothened, Yongbin Chen, Noriaki Sasai, Guoqiang Ma, Tao Yue, Jianhang Jia, James Briscoe, Jin Jiang Jun 2011

Sonic Hedgehog Dependent Phosphorylation By Ck1Α And Grk2 Is Required For Ciliary Accumulation And Activation Of Smoothened, Yongbin Chen, Noriaki Sasai, Guoqiang Ma, Tao Yue, Jianhang Jia, James Briscoe, Jin Jiang

Markey Cancer Center Faculty Publications

Hedgehog (Hh) signaling regulates embryonic development and adult tissue homeostasis through the GPCR-like protein Smoothened (Smo), but how vertebrate Smo is activated remains poorly understood. In Drosophila, Hh dependent phosphorylation activates Smo. Whether this is also the case in vertebrates is unclear, owing to the marked sequence divergence between vertebrate and Drosophila Smo (dSmo) and the involvement of primary cilia in vertebrate Hh signaling. Here we demonstrate that mammalian Smo (mSmo) is activated through multi-site phosphorylation of its carboxyl-terminal tail by CK1α and GRK2. Phosphorylation of mSmo induces its active conformation and simultaneously promotes its ciliary accumulation. We demonstrate that …