Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Investigating The Complexity Of Respiratory Patterns During The Laryngeal Chemoreflex, Andrei Dragomir, Yasemin Akay, Aidan K. Curran, Metin Akay Jun 2008

Investigating The Complexity Of Respiratory Patterns During The Laryngeal Chemoreflex, Andrei Dragomir, Yasemin Akay, Aidan K. Curran, Metin Akay

Dartmouth Scholarship

The laryngeal chemoreflex exists in infants as a primary sensory mechanism for defending the airway from the aspiration of liquids. Previous studies have hypothesized that prolonged apnea associated with this reflex may be life threatening and might be a cause of sudden infant death syndrome. In this study we quantified the output of the respiratory neural network, the diaphragm EMG signal, during the laryngeal chemoreflex and eupnea in early postnatal (3–10 days) piglets. We tested the hypothesis that diaphragm EMG activity corresponding to reflex-related events involved in clearance (restorative) mechanisms such as cough and swallow exhibit lower complexity, suggesting that …


In Vitro Analysis Of Tobramycin-Treated Pseudomonas Aeruginosa Biofilms On Cystic Fibrosis-Derived Airway Epithelial Cells, Gregory G. Anderson, Sophie Moreau-Marquis, Bruce A. Stanton, George A. O'Toole Jan 2008

In Vitro Analysis Of Tobramycin-Treated Pseudomonas Aeruginosa Biofilms On Cystic Fibrosis-Derived Airway Epithelial Cells, Gregory G. Anderson, Sophie Moreau-Marquis, Bruce A. Stanton, George A. O'Toole

Dartmouth Scholarship

P. aeruginosa forms biofilms in the lungs of individuals with cystic fibrosis (CF); however, there have been no effective model systems for studying biofilm formation in the CF lung. We have developed a tissue culture system for growth of P. aeruginosa biofilms on CF-derived human airway cells that promotes the formation of highly antibiotic-resistant microcolonies, which produce an extracellular polysaccharide matrix and require the known abiotic biofilm formation genes flgK and pilB. Treatment of P. aeruginosa biofilms with tobramycin reduced the virulence of the biofilms both by reducing bacterial numbers and by altering virulence gene expression. We performed microarray analysis …