Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

In Vivo Structure-Function Analysis Of Drosophila Robo1, An Axon Guidance Receptor Critical For Midline Repulsive Signaling In The Embryonic Central Nervous System, Haley Brown Jan 2018

In Vivo Structure-Function Analysis Of Drosophila Robo1, An Axon Guidance Receptor Critical For Midline Repulsive Signaling In The Embryonic Central Nervous System, Haley Brown

Graduate Theses and Dissertations

The repellant ligand Slit and its Roundabout (Robo) family receptors regulate many aspects of axon guidance in bilaterians, including midline crossing of axons during development of the embryonic CNS. Slit proteins are produced by midline cells and signal through Robo receptors expressed on the surface of axonal growth cones to repel axons from the midline. Disruption of Slit-Robo signaling causes ectopic midline crossing phenotypes in the CNS of a broad range of animals, including insects and vertebrates.

Drosophila Robo1 has a conserved ectodomain structure of five immunoglobulin-like (Ig) domains plus three fibronectin (FN) repeats. By utilizing a genomic rescue construct …


Studies Of Norspermidine Uptake In Drosophila Suggest The Existence Of Multiple Polyamine Transport Pathways, Michael Dieffenbach Jan 2018

Studies Of Norspermidine Uptake In Drosophila Suggest The Existence Of Multiple Polyamine Transport Pathways, Michael Dieffenbach

Honors Undergraduate Theses

Polyamines are a class of essential nutrients involved in many basic cellular processes such as gene expression, cell proliferation, and apoptosis. Without polyamines, cell growth is delayed or halted. Cancerous cells require an abundance of polyamines through a combination of synthesis and transport from the extracellular environment. An FDA-approved drug, D,L-α-difluoromethylornithine (DFMO), blocks polyamine synthesis but is ineffective at inhibiting cell growth due to polyamine transport. Thus, there is a need to develop drugs that inhibit polyamine transport to use in combination with DFMO. Surprisingly, little is known about the polyamine transport system in humans and other eukaryotes. Understanding the …