Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Department of Neuroscience Faculty Papers

Astrocyte

Articles 1 - 3 of 3

Full-Text Articles in Medicine and Health Sciences

Rotenone Induces Regionally Distinct Α-Synuclein Protein Aggregation And Activation Of Glia Prior To Loss Of Dopaminergic Neurons In C57bl/6 Mice, Savannah M Rocha, Collin M Bantle, Tawfik Aboellail, Debotri Chatterjee, Richard Jay Smeyne, Ronald B Tjalkens Mar 2022

Rotenone Induces Regionally Distinct Α-Synuclein Protein Aggregation And Activation Of Glia Prior To Loss Of Dopaminergic Neurons In C57bl/6 Mice, Savannah M Rocha, Collin M Bantle, Tawfik Aboellail, Debotri Chatterjee, Richard Jay Smeyne, Ronald B Tjalkens

Department of Neuroscience Faculty Papers

Rotenone is a naturally occurring insecticide that inhibits mitochondrial complex I and leads to neurochemical and neuropathological deficits closely resembling those in Parkinson's disease (PD). Deficits include loss of dopaminergic neurons (DAn) in the substantia nigra pars compacta (SNpc), decreased dopamine levels and aggregation of misfolded alpha-synuclein (p129). In rat models of rotenone-induced parkinsonism, the progression of neuronal injury has been associated with activation of microglia and astrocytes. However, these neuroinflammatory changes have been challenging to study in mice, in part because the systemic rotenone exposure model utilized in rats is more toxic to mice. To establish a reproducible murine …


Response Of Astrocyte Subpopulations Following Spinal Cord Injury, R Vivian Allahyari, Nicolette M Heinsinger, Daniel Hwang, David A Jaffe, Javad Rasouli, Stephanie Shiers, Samantha J Thomas, Theodore J Price, A M Rostami, Angelo C Lepore Feb 2022

Response Of Astrocyte Subpopulations Following Spinal Cord Injury, R Vivian Allahyari, Nicolette M Heinsinger, Daniel Hwang, David A Jaffe, Javad Rasouli, Stephanie Shiers, Samantha J Thomas, Theodore J Price, A M Rostami, Angelo C Lepore

Department of Neuroscience Faculty Papers

There is growing appreciation for astrocyte heterogeneity both across and within central nervous system (CNS) regions, as well as between intact and diseased states. Recent work identified multiple astrocyte subpopulations in mature brain. Interestingly, one subpopulation (Population C) was shown to possess significantly enhanced synaptogenic properties in vitro, as compared with other astrocyte subpopulations of adult cortex and spinal cord. Following spinal cord injury (SCI), damaged neurons lose synaptic connections with neuronal partners, resulting in persistent functional loss. We determined whether SCI induces an enhanced synaptomodulatory astrocyte phenotype by shifting toward a greater proportion of Population C cells and/or increasing …


Regional Microglia Are Transcriptionally Distinct But Similarly Exacerbate Neurodegeneration In A Culture Model Of Parkinson's Disease., Eric Wildon Kostuk, Jingli Cai, Lorraine Iacovitti May 2018

Regional Microglia Are Transcriptionally Distinct But Similarly Exacerbate Neurodegeneration In A Culture Model Of Parkinson's Disease., Eric Wildon Kostuk, Jingli Cai, Lorraine Iacovitti

Department of Neuroscience Faculty Papers

BACKGROUND: Parkinson's disease (PD) is characterized by selective degeneration of dopaminergic (DA) neurons of the substantia nigra pars compacta (SN) while neighboring ventral tegmental area (VTA) DA neurons are relatively spared. Mechanisms underlying the selective protection of the VTA and susceptibility of the SN are still mostly unknown. Here, we demonstrate the importance of balance between astrocytes and microglia in the susceptibility of SN DA neurons to the PD mimetic toxin 1-methyl-4-phenylpyridinium (MPP

METHODS: Previously established methods were used to isolate astrocytes and microglia from the cortex (CTX), SN, and VTA, as well as embryonic midbrain DA neurons from the …