Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Quantitative 1h Magnetic Resonance Spectroscopic Imaging Determines Therapeutic Immunization Efficacy In An Animal Model Of Parkinson's Disease., Michael D. Boska, Travis B. Lewis, Christopher J. Destache, Eric J. Benner, Jay A. Nelson, Mariano Uberti, R. Lee Mosley, Howard Gendelman Feb 2005

Quantitative 1h Magnetic Resonance Spectroscopic Imaging Determines Therapeutic Immunization Efficacy In An Animal Model Of Parkinson's Disease., Michael D. Boska, Travis B. Lewis, Christopher J. Destache, Eric J. Benner, Jay A. Nelson, Mariano Uberti, R. Lee Mosley, Howard Gendelman

Journal Articles: Radiology

Nigrostriatal degeneration, the pathological hallmark of Parkinson's disease (PD), is mirrored by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication. MPTP-treated animals show the common behavioral, motor, and pathological features of human disease. We demonstrated previously that adoptive transfer of Copaxone (Cop-1) immune cells protected the nigrostriatal dopaminergic pathway in MPTP-intoxicated mice. Herein, we evaluated this protection by quantitative proton magnetic resonance spectroscopic imaging (1H MRSI). 1H MRSI performed in MPTP-treated mice demonstrated that N-acetyl aspartate (NAA) was significantly diminished in the substantia nigra pars compacta (SNpc) and striatum, regions most affected in human disease. When the same regions were coregistered with immunohistochemical stains for …


Mitochondrial Dna Mutations, Apoptosis, And The Misfolded Protein Response., Justin L. Mott, Dekui Zhang, Hans Peter Zassenhaus Jan 2005

Mitochondrial Dna Mutations, Apoptosis, And The Misfolded Protein Response., Justin L. Mott, Dekui Zhang, Hans Peter Zassenhaus

Journal Articles: Biochemistry & Molecular Biology

Studies of transgenic mice with accelerated accumulation of mtDNA mutations specifically in the heart lead us to propose that apoptotic signaling and cell death is central to the pathogenesis of mtDNA mutations in aging. It is the cellular response to that apoptotic signaling and the organ?s compensatory response to a loss of cells that specify the phenotype of an accumulation of mtDNA mutations. In the heart, cardiomyocytes induce a vigorous anti-apoptotic, pro-survival response to counteract mitochondrial apoptotic signaling. The heart up-regulates contractility of remaining myocytes in order to maintain cardiac output. We hypothesize that mutant mitochondrial proteins originate apoptotic signaling …