Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nebraska Medical Center

Systems and Integrative Physiology

Angiotensin II

2014

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Over-Expression Of Copper/Zinc Superoxide Dismutase In The Median Preoptic Nucleus Attenuates Chronic Angiotensin Ii-Induced Hypertension In The Rat., John P. Collister, Mitch Bellrichard, Donna Drebes, David Nahey, Jun Tian, Matthew C. Zimmerman Dec 2014

Over-Expression Of Copper/Zinc Superoxide Dismutase In The Median Preoptic Nucleus Attenuates Chronic Angiotensin Ii-Induced Hypertension In The Rat., John P. Collister, Mitch Bellrichard, Donna Drebes, David Nahey, Jun Tian, Matthew C. Zimmerman

Journal Articles: Cellular & Integrative Physiology

The brain senses circulating levels of angiotensin II (AngII) via circumventricular organs, such as the subfornical organ (SFO), and is thought to adjust sympathetic nervous system output accordingly via this neuro-hormonal communication. However, the cellular signaling mechanisms involved in these communications remain to be fully understood. Previous lesion studies of either the SFO, or the downstream median preoptic nucleus (MnPO) have shown a diminution of the hypertensive effects of chronic AngII, without providing a clear explanation as to the intracellular signaling pathway(s) involved. Additional studies have reported that over-expressing copper/zinc superoxide dismutase (CuZnSOD), an intracellular superoxide (O2·-) scavenging enzyme, in …


Over-Expressed Copper/Zinc Superoxide Dismutase Localizes To Mitochondria In Neurons Inhibiting The Angiotensin Ii-Mediated Increase In Mitochondrial Superoxide, Shumin Li, Adam J. Case, Rui-Fang Yang, Harold D. Schultz, Matthew C. Zimmerman Jan 2014

Over-Expressed Copper/Zinc Superoxide Dismutase Localizes To Mitochondria In Neurons Inhibiting The Angiotensin Ii-Mediated Increase In Mitochondrial Superoxide, Shumin Li, Adam J. Case, Rui-Fang Yang, Harold D. Schultz, Matthew C. Zimmerman

Journal Articles: Cellular & Integrative Physiology

Angiotensin II (AngII) is the main effector peptide of the renin-angiotensin system (RAS), and contributes to the pathogenesis of cardiovascular disease by exerting its effects on an array of different cell types, including central neurons. AngII intra-neuronal signaling is mediated, at least in part, by reactive oxygen species, particularly superoxide (O2 (•-)). Recently, it has been discovered that mitochondria are a major subcellular source of AngII-induced O2 (•-). We have previously reported that over-expression of manganese superoxide dismutase (MnSOD), a mitochondrial matrix-localized O2 (•-) scavenging enzyme, inhibits AngII intra-neuronal signaling. Interestingly, over-expression of copper/zinc superoxide dismutase (CuZnSOD), which is believed …