Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Medicine and Health Sciences

Binding, Transcytosis And Biodistribution Of Anti-Pecam-1 Iron Oxide Nanoparticles For Brain-Targeted Delivery, Mo Dan, David B. Cochran, Robert A. Yokel, Thomas D. Dziubla Nov 2013

Binding, Transcytosis And Biodistribution Of Anti-Pecam-1 Iron Oxide Nanoparticles For Brain-Targeted Delivery, Mo Dan, David B. Cochran, Robert A. Yokel, Thomas D. Dziubla

Pharmaceutical Sciences Faculty Publications

OBJECTIVE: Characterize the flux of platelet-endothelial cell adhesion molecule (PECAM-1) antibody-coated superparamagnetic iron oxide nanoparticles (IONPs) across the blood-brain barrier (BBB) and its biodistribution in vitro and in vivo.

METHODS: Anti-PECAM-1 IONPs and IgG IONPs were prepared and characterized in house. The binding affinity of these nanoparticles was investigated using human cortical microvascular endothelial cells (hCMEC/D3). Flux assays were performed using a hCMEC/D3 BBB model. To test their immunospecificity index and biodistribution, nanoparticles were given to Sprague Dawley rats by intra-carotid infusion. The capillary depletion method was used to elucidate their distribution between the BBB and brain parenchyma.

RESULTS: Anti-PECAM-1 …


Evidence For Finely-Regulated Asynchronous Growth Of Toxoplasma Gondii Cysts Based On Data-Driven Model Selection, Adam M. Sullivan, Xiaopeng Zhao, Yasuhiro Suzuki, Eri Ochiai, Stephen Crutcher, Michael A. Gilchrist Nov 2013

Evidence For Finely-Regulated Asynchronous Growth Of Toxoplasma Gondii Cysts Based On Data-Driven Model Selection, Adam M. Sullivan, Xiaopeng Zhao, Yasuhiro Suzuki, Eri Ochiai, Stephen Crutcher, Michael A. Gilchrist

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Toxoplasma gondii establishes a chronic infection by forming cysts preferentially in the brain. This chronic infection is one of the most common parasitic infections in humans and can be reactivated to develop life-threatening toxoplasmic encephalitis in immunocompromised patients. Host-pathogen interactions during the chronic infection include growth of the cysts and their removal by both natural rupture and elimination by the immune system. Analyzing these interactions is important for understanding the pathogenesis of this common infection. We developed a differential equation framework of cyst growth and employed Akaike Information Criteria (AIC) to determine the growth and removal functions that best describe …


Metal-Based Nanoparticle Interactions With The Nervous System: The Challenge Of Brain Entry And The Risk Of Retention In The Organism, Robert A. Yokel, Eric A. Grulke, Robert C. Macphail Jul 2013

Metal-Based Nanoparticle Interactions With The Nervous System: The Challenge Of Brain Entry And The Risk Of Retention In The Organism, Robert A. Yokel, Eric A. Grulke, Robert C. Macphail

Pharmaceutical Sciences Faculty Publications

This review of metal-based nanoparticles focuses on factors influencing their distribution into the nervous system, evidence they enter brain parenchyma, and nervous system responses. Gold is emphasized as a model metal-based nanoparticle and for risk assessment in the companion review. The anatomy and physiology of the nervous system, basics of colloid chemistry, and environmental factors that influence what cells see are reviewed to provide background on the biological, physical–chemical, and internal milieu factors that influence nervous system nanoparticle uptake. The results of literature searches reveal little nanoparticle research included the nervous system, which about equally involved in vitro and in …


Biodistribution And Biopersistence Of Ceria Engineered Nanomaterials: Size Dependence, Robert A. Yokel, Michael T. Tseng, Mo Dan, Jason M. Unrine, Uschi M. Graham, Peng Wu, Eric A. Grulke Apr 2013

Biodistribution And Biopersistence Of Ceria Engineered Nanomaterials: Size Dependence, Robert A. Yokel, Michael T. Tseng, Mo Dan, Jason M. Unrine, Uschi M. Graham, Peng Wu, Eric A. Grulke

Pharmaceutical Sciences Faculty Publications

The aims were to determine the biodistribution, translocation, and persistence of nanoceria in the brain and selected peripheral organs. Nanoceria is being studied as an anti-oxidant therapeutic. Five, 15, 30, or 55 nm ceria was iv infused into rats which were terminated 1, 20, or 720 h later. Cerium was determined in blood, brain, liver, and spleen. Liver and spleen contained a large percentage of the dose, from which there was no significant clearance over 720 h, associated with adverse changes. Very little nanoceria entered brain parenchyma. The results suggest brain delivery of nanoceria will be a challenge.

FROM THE …


Block Copolymer Cross-Linked Nanoassemblies Improve Particle Stability And Biocompatibility Of Superparamagnetic Iron Oxide Nanoparticles, Mo Dan, Daniel F. Scott, Peter A. Hardy, Robert J. Wydra, J. Zach Hilt, Robert A. Yokel, Younsoo Bae Feb 2013

Block Copolymer Cross-Linked Nanoassemblies Improve Particle Stability And Biocompatibility Of Superparamagnetic Iron Oxide Nanoparticles, Mo Dan, Daniel F. Scott, Peter A. Hardy, Robert J. Wydra, J. Zach Hilt, Robert A. Yokel, Younsoo Bae

Pharmaceutical Sciences Faculty Publications

PURPOSE: To develop cross-linked nanoassemblies (CNAs) as carriers for superparamagnetic iron oxide nanoparticles (IONPs).

METHODS: Ferric and ferrous ions were co-precipitated inside core-shell type nanoparticles prepared by cross-linking poly(ethylene glycol)-poly(aspartate) block copolymers to prepare CNAs entrapping Fe(3)O(4) IONPs (CNA-IONPs). Particle stability and biocompatibility of CNA-IONPs were characterized in comparison to citrate-coated Fe(3)O(4) IONPs (Citrate-IONPs).

RESULTS: CNA-IONPs, approximately 30 nm in diameter, showed no precipitation in water, PBS, or a cell culture medium after 3 or 30 h, at 22, 37, and 43°C, and 1, 2.5, and 5 mg/mL, whereas Citrate-IONPs agglomerated rapidly (> 400 nm) in all …


Doxorubicin-Induced, Tnf-Α-Mediated Brain Oxidative Stress, Neurochemical Alterations, And Cognitive Decline: Insights Into Mechanisms Of Chemotherapy Induced Cognitive Impairment And Its Prevention, Jeriel T. Keeney Jan 2013

Doxorubicin-Induced, Tnf-Α-Mediated Brain Oxidative Stress, Neurochemical Alterations, And Cognitive Decline: Insights Into Mechanisms Of Chemotherapy Induced Cognitive Impairment And Its Prevention, Jeriel T. Keeney

Theses and Dissertations--Chemistry

The works presented in this dissertation provide insights into the mechanisms of chemotherapy-induced cognitive impairment (CICI or “ChemoBrain”) and take steps toward outlining a preventive strategy. CICI is now widely recognized as a complication of cancer chemotherapy experienced by a large percentage of cancer survivors. Approximately fifty percent of existing FDA-approved anti-cancer drugs generate reactive oxygen species (ROS). Doxorubicin (Dox), a prototypical ROS-generating chemotherapeutic agent, produces the reactive superoxide radical anion (O2-•) in vivo. Dox treatment results in oxidation of plasma proteins, including ApoA-I, leading to TNF-α-mediated oxidative stress in plasma and brain. TNF-α elevation in brain …