Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Medicine and Health Sciences

Prostacyclin Promotes Degenerative Pathology In A Model Of Alzheimer’S Disease, Tasha R. Womack, Craig T. Vollert, Odochi Ohia-Nwoko, Monika Schmitt, Saghi Montazari, Tina L. Beckett, David Mayerich, Michael Paul Murphy, Jason L. Eriksen Feb 2022

Prostacyclin Promotes Degenerative Pathology In A Model Of Alzheimer’S Disease, Tasha R. Womack, Craig T. Vollert, Odochi Ohia-Nwoko, Monika Schmitt, Saghi Montazari, Tina L. Beckett, David Mayerich, Michael Paul Murphy, Jason L. Eriksen

Sanders-Brown Center on Aging Faculty Publications

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is the most common form of dementia in aged populations. A substantial amount of data demonstrates that chronic neuroinflammation can accelerate neurodegenerative pathologies. In AD, chronic neuroinflammation results in the upregulation of cyclooxygenase and increased production of prostaglandin H2, a precursor for many vasoactive prostanoids. While it is well-established that many prostaglandins can modulate the progression of neurodegenerative disorders, the role of prostacyclin (PGI2) in the brain is poorly understood. We have conducted studies to assess the effect of elevated prostacyclin biosynthesis in a mouse model of AD. Upregulated prostacyclin expression …


Mammalian Target Of Rapamycin Cell Signaling Pathway In Phosphatase And Tensin Homolog Induced Kinase 1 Knockout Rat Model Of Familial Parkinson's Disease, Martha Helena Mortell Jan 2022

Mammalian Target Of Rapamycin Cell Signaling Pathway In Phosphatase And Tensin Homolog Induced Kinase 1 Knockout Rat Model Of Familial Parkinson's Disease, Martha Helena Mortell

Theses and Dissertations--Medical Sciences

More than 10 million people are living with Parkinson’s disease (PD), one million of which are people in the United States. PD is the second most common age-related neurodegenerative disorder, after Alzheimer’s disease, and is characterized by the accumulation of a-synuclein aggregates and the degeneration of dopaminergic neurons. The loss of endogenous dopamine in PD brain accounts for the motor decline presented clinically in PD patients. Etiological factors of PD include oxidative damage and inflammation, although the detailed mechanisms remain unknown. Risk factors for PD include gender, age, environmental factors, and gene mutations.

The current thesis research employed phosphatase and …


Myeloid Arginase 1 Insufficiency Exacerbates Amyloid-Β Associated Neurodegenerative Pathways And Glial Signatures In A Mouse Model Of Alzheimer’S Disease: A Targeted Transcriptome Analysis, Chao Ma, Jerry B. Hunt, Andrii Kovalenko, Huimin Liang, Maj-Linda B. Selenica, Michael B. Orr, Bei Zhang, John C. Gensel, David J. Feola, Marcia N. Gordon, Dave Morgan, Paula C. Bickford, Daniel C. Lee May 2021

Myeloid Arginase 1 Insufficiency Exacerbates Amyloid-Β Associated Neurodegenerative Pathways And Glial Signatures In A Mouse Model Of Alzheimer’S Disease: A Targeted Transcriptome Analysis, Chao Ma, Jerry B. Hunt, Andrii Kovalenko, Huimin Liang, Maj-Linda B. Selenica, Michael B. Orr, Bei Zhang, John C. Gensel, David J. Feola, Marcia N. Gordon, Dave Morgan, Paula C. Bickford, Daniel C. Lee

Sanders-Brown Center on Aging Faculty Publications

Brain myeloid cells, include infiltrating macrophages and resident microglia, play an essential role in responding to and inducing neurodegenerative diseases, such as Alzheimer’s disease (AD). Genome-wide association studies (GWAS) implicate many AD casual and risk genes enriched in brain myeloid cells. Coordinated arginine metabolism through arginase 1 (Arg1) is critical for brain myeloid cells to perform biological functions, whereas dysregulated arginine metabolism disrupts them. Altered arginine metabolism is proposed as a new biomarker pathway for AD. We previously reported Arg1 deficiency in myeloid biased cells using lysozyme M (LysM) promoter-driven deletion worsened amyloidosis-related neuropathology and behavioral impairment. However, …


Dystrophic Microglia Are Associated With Neurodegenerative Disease And Not Healthy Aging In The Human Brain, Ryan K. Shahidehpour, Rebecca E. Higdon, Nicole G. Crawford, Janna H. Neltner, Eseosa T. Ighodaro, Ela Patel, Douglas Price, Peter T. Nelson, Adam D. Bachstetter Jan 2021

Dystrophic Microglia Are Associated With Neurodegenerative Disease And Not Healthy Aging In The Human Brain, Ryan K. Shahidehpour, Rebecca E. Higdon, Nicole G. Crawford, Janna H. Neltner, Eseosa T. Ighodaro, Ela Patel, Douglas Price, Peter T. Nelson, Adam D. Bachstetter

Spinal Cord and Brain Injury Research Center Faculty Publications

Loss of physiological microglial function may increase the propagation of neurodegenerative diseases. Cellular senescence is a hallmark of aging; thus, we hypothesized age could be a cause of dystrophic microglia. Stereological counts were performed for total microglia, 2 microglia morphologies (hypertrophic and dystrophic) across the human lifespan. An age-associated increase in the number of dystrophic microglia was found in the hippocampus and frontal cortex. However, the increase in dystrophic microglia was proportional to the age-related increase in the total number of microglia. Thus, aging alone does not explain the presence of dystrophic microglia. We next tested if dystrophic microglia could …


Pre-Clinical Advancements In Biomarkers, Tools, And Therapeutics For A Metabolic Neurodegenerative Disease, Zoë Simmons Jan 2021

Pre-Clinical Advancements In Biomarkers, Tools, And Therapeutics For A Metabolic Neurodegenerative Disease, Zoë Simmons

Theses and Dissertations--Molecular and Cellular Biochemistry

Glycogen is the storage form of glucose and a highly important substrate for cellular metabolism. Characterization of the enzymes and mechanisms of glycogen metabolism began over 70 years ago and over the last 20 years, a previously unknown protein called laforin has emerged as an important contributor to glycogen metabolism homeostasis. Multiple labs demonstrated that laforin is a glycogen phosphatase and mutations in the gene encoding laforin cause the formation of aberrant glycogen-like aggregates called Lafora bodies (LBs). LBs are cytoplasmic, water-insoluble aggregates that drive neurodegeneration and early death in Lafora disease (LD) patients. The direct relationship between mutated laforin, …


Manf Is Neuroprotective Against Ethanol-Induced Neurodegeneration Through Ameliorating Er Stress, Yongchao Wang, Wen Wen, Hui Li, Marco Clementino, Hong Xu, Mei Xu, Murong Ma, Jacqueline A. Frank, Jia Luo Dec 2020

Manf Is Neuroprotective Against Ethanol-Induced Neurodegeneration Through Ameliorating Er Stress, Yongchao Wang, Wen Wen, Hui Li, Marco Clementino, Hong Xu, Mei Xu, Murong Ma, Jacqueline A. Frank, Jia Luo

Pharmacology and Nutritional Sciences Faculty Publications

Fetal alcohol spectrum disorders (FASD) are a spectrum of developmental disorders caused by prenatal alcohol exposure. Neuronal loss or neurodegeneration in the central nervous system (CNS) is one of the most devastating features in FASD. It is imperative to delineate the underlying mechanisms to facilitate the treatment of FASD. Endoplasmic reticulum (ER) stress is a hallmark and an underlying mechanism of many neurodegenerative diseases, including ethanol-induced neurodegeneration. Mesencephalic astrocyte-derived neurotrophic factor (MANF) responds to ER stress and has been identified as a protein upregulated in response to ethanol exposure during the brain development. To investigate the role of MANF in …


Ceramide Analog [18F]F-Hpa-12 Detects Sphingolipid Disbalance In The Brain Of Alzheimer’S Disease Transgenic Mice By Functioning As A Metabolic Probe, Simone M. Crivelli, Daan Van Kruining, Qian Luo, Jo A. A. Stevens, Caterina Giovagnoni, Andreas Paulus, Matthias Bauwens, Dusan Berkes, Helga E. De Vries, Monique T. Mulder, Jochen Walter, Etienne Waelkens, Rita Derua, Johannes V. Swinnen, Jonas Dehairs, Felix M. Mottaghy, Mario Losen, Erhard Bieberich, Pilar Martinez-Martinez Nov 2020

Ceramide Analog [18F]F-Hpa-12 Detects Sphingolipid Disbalance In The Brain Of Alzheimer’S Disease Transgenic Mice By Functioning As A Metabolic Probe, Simone M. Crivelli, Daan Van Kruining, Qian Luo, Jo A. A. Stevens, Caterina Giovagnoni, Andreas Paulus, Matthias Bauwens, Dusan Berkes, Helga E. De Vries, Monique T. Mulder, Jochen Walter, Etienne Waelkens, Rita Derua, Johannes V. Swinnen, Jonas Dehairs, Felix M. Mottaghy, Mario Losen, Erhard Bieberich, Pilar Martinez-Martinez

Physiology Faculty Publications

The metabolism of ceramides is deregulated in the brain of Alzheimer’s disease (AD) patients and is associated with apolipoprotein (APO) APOE4 and amyloid-β pathology. However, how the ceramide metabolism changes over time in AD, in vivo, remains unknown. Distribution and metabolism of [18F]F-HPA-12, a radio-fluorinated version of the ceramide analog N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl) dodecanamide, was investigated in the brain of AD transgenic mouse models (FAD) on an APOE4 or APOE3 genetic background, by positron emission tomography and by gamma counter. We found that FAD mice displayed a higher uptake of [18F]F-HPA-12 in the brain, independently from the APOE4 …


Tdp-43 Mediated Blood-Brain Barrier Permeability And Leukocyte Infiltration Promote Neurodegeneration In A Low-Grade Systemic Inflammation Mouse Model, Frank Zamudio, Anjanet R. Loon, Shayna Smeltzer, Khawla Benyamine, Nanda K. Navalpur Shanmugam, Nicholas J. F. Stewart, Daniel C. Lee, Kevin Nash, Maj-Linda B. Selenica Sep 2020

Tdp-43 Mediated Blood-Brain Barrier Permeability And Leukocyte Infiltration Promote Neurodegeneration In A Low-Grade Systemic Inflammation Mouse Model, Frank Zamudio, Anjanet R. Loon, Shayna Smeltzer, Khawla Benyamine, Nanda K. Navalpur Shanmugam, Nicholas J. F. Stewart, Daniel C. Lee, Kevin Nash, Maj-Linda B. Selenica

Sanders-Brown Center on Aging Faculty Publications

BACKGROUND: Neuronal cytoplasmic inclusions containing TAR DNA-binding protein 43 (TDP-43) are a neuropathological feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's Disease (AD). Emerging evidence also indicates that systemic inflammation may be a contributor to the pathology progression of these neurodegenerative diseases.

METHODS: To investigate the role of systemic inflammation in the progression of neuronal TDP-43 pathology, AAV9 particles driven by the UCHL1 promoter were delivered to the frontal cortex of wild-type aged mice via intracranial injections to overexpress TDP-43 or green fluorescent protein (GFP) in corticospinal motor neurons. Animals were then subjected …


Autologous Peripheral Nerve Grafts To The Brain For The Treatment Of Parkinson's Disease, Andrew Welleford Jan 2019

Autologous Peripheral Nerve Grafts To The Brain For The Treatment Of Parkinson's Disease, Andrew Welleford

Theses and Dissertations--Neuroscience

Parkinson’s disease (PD) is a disorder of the nervous system that causes problems with movement (motor symptoms) as well as other problems such as mood disorders, cognitive changes, sleep disorders, constipation, pain, and other non-motor symptoms. The severity of PD symptoms worsens over time as the disease progresses, and while there are treatments for the motor and some non-motor symptoms there is no known cure for PD. Thus there is a high demand for therapies to slow the progressive neurodegeneration observed in PD. Two clinical trials at the University of Kentucky College of Medicine (NCT02369003, NCT01833364) are currently underway that …


Apoe And Alzheimer’S Disease: Neuroimaging Of Metabolic And Cerebrovascular Dysfunction, Jason A. Brandon, Brandon C. Farmer, Holden C. Williams, Lance A. Johnson Jun 2018

Apoe And Alzheimer’S Disease: Neuroimaging Of Metabolic And Cerebrovascular Dysfunction, Jason A. Brandon, Brandon C. Farmer, Holden C. Williams, Lance A. Johnson

Physiology Faculty Publications

Apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for late onset Alzheimer’s Disease (AD), and is associated with impairments in cerebral metabolism and cerebrovascular function. A substantial body of literature now points to E4 as a driver of multiple impairments seen in AD, including blunted brain insulin signaling, mismanagement of brain cholesterol and fatty acids, reductions in blood brain barrier (BBB) integrity, and decreased cerebral glucose uptake. Various neuroimaging techniques, in particular positron emission topography (PET) and magnetic resonance imaging (MRI), have been instrumental in characterizing these metabolic and vascular deficits associated with this important AD risk factor. In …


Minocycline Protects Developing Brain Against Ethanol-Induced Damage, Xin Wang, Kai Zhang, Fanmuyi Yang, Zhenhua Ren, Mei Xu, Jacqueline A. Frank, Zun-Ji Ke, Jia Luo Feb 2018

Minocycline Protects Developing Brain Against Ethanol-Induced Damage, Xin Wang, Kai Zhang, Fanmuyi Yang, Zhenhua Ren, Mei Xu, Jacqueline A. Frank, Zun-Ji Ke, Jia Luo

Pharmacology and Nutritional Sciences Faculty Publications

Fetal alcohol spectrum disorders (FASD) are caused by ethanol exposure during the pregnancy and is the leading cause of mental retardation. Ethanol exposure during the development results in the loss of neurons in the developing brain, which may underlie many neurobehavioral deficits associated with FASD. It is important to understand the mechanisms underlying ethanol-induced neuronal loss and develop appropriate therapeutic strategies. One of the potential mechanisms involves neuroimmune activation. Using a third trimester equivalent mouse model of ethanol exposure, we demonstrated that ethanol induced a wide-spread neuroapoptosis, microglial activation, and neuroinflammation in C57BL/6 mice. Minocycline is an antibiotic that inhibits …


Prior Binge Ethanol Exposure Potentiates The Microglial Response In A Model Of Alcohol-Induced Neurodegeneration, Simon Alex Marshall, Chelsea Rhea Geil Nickell, Kimberly Nixon May 2016

Prior Binge Ethanol Exposure Potentiates The Microglial Response In A Model Of Alcohol-Induced Neurodegeneration, Simon Alex Marshall, Chelsea Rhea Geil Nickell, Kimberly Nixon

Pharmaceutical Sciences Faculty Publications

Excessive alcohol consumption results in neurodegeneration which some hypothesize is caused by neuroinflammation. One characteristic of neuroinflammation is microglial activation, but it is now well accepted that microglial activation may be pro- or anti-inflammatory. Recent work indicates that the Majchrowicz model of alcohol-induced neurodegeneration results in anti-inflammatory microglia, while intermittent exposure models with lower doses and blood alcohol levels produce microglia with a pro-inflammatory phenotype. To determine the effect of a repeated binge alcohol exposure, rats received two cycles of the four-day Majchrowicz model. One hemisphere was then used to assess microglia via immunohistochemistry and while the other was used …


Histological And Behavioral Consequences Of Repeated Mild Traumatic Brain Injury In Mice, Amanda Nicholle Bolton Hall Jan 2016

Histological And Behavioral Consequences Of Repeated Mild Traumatic Brain Injury In Mice, Amanda Nicholle Bolton Hall

Theses and Dissertations--Physiology

The majority of the estimated three million traumatic brain injuries that occur each year are classified as “mild” and do not require surgical intervention. However, debilitating symptoms such as difficulties focusing on tasks, anxiety, depression, and visual deficits can persist chronically after a mild traumatic brain injury (TBI) even if an individual appears “fine”. These symptoms have been observed to worsen or be prolonged when an individual has suffered multiple mild TBIs. To test the hypothesis that increasing the amount of time between head injuries can reduce the histopathological and behavioral consequences of repeated mild TBI, a mouse model of …


Endoplasmic Reticulum Stress And Ethanol Neurotoxicity, Fanmuyi Yang, Jia Luo Dec 2015

Endoplasmic Reticulum Stress And Ethanol Neurotoxicity, Fanmuyi Yang, Jia Luo

Pharmacology and Nutritional Sciences Faculty Publications

Ethanol abuse affects virtually all organ systems and the central nervous system (CNS) is particularly vulnerable to excessive ethanol exposure. Ethanol exposure causes profound damages to both the adult and developing brain. Prenatal ethanol exposure induces fetal alcohol spectrum disorders (FASD) which is associated with mental retardation and other behavioral deficits. A number of potential mechanisms have been proposed for ethanol-induced brain damage; these include the promotion of neuroinflammation, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, and thiamine deficiency. The endoplasmic reticulum (ER) regulates posttranslational protein processing and transport. The accumulation of …


Investigating Therapeutic Options For Lafora Disease Using Structural Biology And Translational Methods, Amanda R. Sherwood Jan 2013

Investigating Therapeutic Options For Lafora Disease Using Structural Biology And Translational Methods, Amanda R. Sherwood

Theses and Dissertations--Molecular and Cellular Biochemistry

Lafora disease (LD) is a rare yet invariably fatal form of epilepsy characterized by progressive degeneration of the central nervous and motor systems and accumulation of insoluble glucans within cells. LD results from mutation of either the phosphatase laforin, an enzyme that dephosphorylates cellular glycogen, or the E3 ubiquitin ligase malin, the binding partner of laforin. Currently, there are no therapeutic options for LD, or reported methods by which the specific activity of glucan phosphatases such as laforin can be easily measured. To facilitate our translational studies, we developed an assay with which the glucan phosphatase activity of laforin as …


Microglia Activation In A Rodent Model Of An Alcohol Use Disorder: The Importance Of Phenotype, Initiation, And Duration Of Activation, Simon A. Marshall Jan 2013

Microglia Activation In A Rodent Model Of An Alcohol Use Disorder: The Importance Of Phenotype, Initiation, And Duration Of Activation, Simon A. Marshall

Theses and Dissertations--Pharmacy

Chronic ethanol exposure results in neuroadaptations that drive the progression of an alcohol use disorder (AUD). One such driving force is alcohol-induced neurodegeneration. Neuroinflammation has been proposed as a mechanism underlying this damage. Although neuroinflammation is a physiological response to damage, overactivation of its pathways can lead to neurodegeneration. A hallmark indicator of neuroinflammation is microglial activation, but microglial activation is a heterogeneous continuum of phenotypes that can promote or inhibit neuroinflammation. Furthermore acute microglial activation is necessary to restore homeostasis, but prolonged activation can exacerbate damage. The diversity of microglia makes both the level and timecourse of activation vital …


The Mir-15/107 Group Of Microrna Genes: Evolutionary Biology, Cellular Functions, And Roles In Human Diseases, John R. Finnerty, Wang-Xia Wang, Sébastien S. Hébert, Bernard R. Wilfred, Guogen Mao, Peter T. Nelson Sep 2010

The Mir-15/107 Group Of Microrna Genes: Evolutionary Biology, Cellular Functions, And Roles In Human Diseases, John R. Finnerty, Wang-Xia Wang, Sébastien S. Hébert, Bernard R. Wilfred, Guogen Mao, Peter T. Nelson

Pathology and Laboratory Medicine Faculty Publications

The miR-15/107 group of microRNA (miRNA) gene is increasingly appreciated to serve key functions in humans. These miRNAs regulate gene expression involved in cell division, metabolism, stress response, and angiogenesis in vertebrate species. The miR-15/107 group has also been implicated in human cancers, cardiovascular disease and neurodegenerative disease, including Alzheimer's disease. Here we provide an overview of the following: (1) the evolution of miR-15/107 group member genes; (2) the expression levels of miRNAs in mammalian tissues; (3) evidence for overlapping gene-regulatory functions by different miRNAs; (4) the normal biochemical pathways regulated by miR-15/107 group miRNAs; and (5) the roles played …


High-Throughput Experimental Studies To Identify Mirna Targets Directly, With Special Focus On The Mammalian Brain, Peter T. Nelson, Marianthi Kiriakidou, Zissimos Mourelatos, Grace S. Tan, Mary H. Jennings, Kevin Xie, Wang-Xia Wang Jun 2010

High-Throughput Experimental Studies To Identify Mirna Targets Directly, With Special Focus On The Mammalian Brain, Peter T. Nelson, Marianthi Kiriakidou, Zissimos Mourelatos, Grace S. Tan, Mary H. Jennings, Kevin Xie, Wang-Xia Wang

Pathology and Laboratory Medicine Faculty Publications

We review the pertinent literature on methods used in high-throughput experimental identification of microRNA (miRNA) "targets" with emphasis on neurochemical studies. miRNAs are short regulatory noncoding RNAs that play important roles in the mammalian brain. The functions of miRNAs are related to their binding of RNAs including mRNAs. Since mammalian miRNAs tend to bind to target mRNAs via imperfect complementarity, understanding exactly which target mRNAs are recognized by which specific miRNAs is a challenge. Based on early experimental evidence, a set of "binding rules" for miRNAs has been described. These have focused on the 5' "seed" region of miRNAs binding …


Molecular Mechanisms Of Olfactory Neurodegeneration, Radhika Anand Vaishnav Jan 2007

Molecular Mechanisms Of Olfactory Neurodegeneration, Radhika Anand Vaishnav

University of Kentucky Doctoral Dissertations

Olfactory sensory decline has been associated with normal aging as well as neurodegenerative disorders, yet the underlying mechanisms are unclear. The overall aim of this dissertation was to investigate the fundamental molecular and cellular mechanisms associated with olfactory neurodegeneration. This investigation uses an integrative approach, combining proteomics and gene expression analyses with cellular and tissuelevel characterization. Using these approaches, two model systems were investigated: 1) normally aging C57BL/6 mice of ages 1.5-, 6- and 20-months; and 2) a mouse model of elevated endogenous oxidative stress-associated neurodegeneration, namely, the Harlequin mutant mouse. The first specific aim was to test the hypothesis …