Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Medicine and Health Sciences

Microrna Expression Patterns In Human Anterior Cingulate And Motor Cortex: A Study Of Dementia With Lewy Bodies Cases And Controls, Peter T. Nelson, Wang-Xia Wang, Sarah A. Janse, Katherine L. Thompson Jan 2018

Microrna Expression Patterns In Human Anterior Cingulate And Motor Cortex: A Study Of Dementia With Lewy Bodies Cases And Controls, Peter T. Nelson, Wang-Xia Wang, Sarah A. Janse, Katherine L. Thompson

Sanders-Brown Center on Aging Faculty Publications

Overview

MicroRNAs (miRNAs) have been implicated in neurodegenerative diseases including Parkinson’s disease and Alzheimer’s disease (AD). Here, we evaluated the expression of miRNAs in anterior cingulate (AC; Brodmann area [BA] 24) and primary motor (MO; BA 4) cortical tissue from aged human brains in the University of Kentucky AD Center autopsy cohort, with a focus on dementia with Lewy bodies (DLB).

Methods

RNA was isolated from gray matter of brain samples with pathology-defined DLB, AD, AD+DLB, and low-pathology controls, with n=52 cases initially included (n=23 with DLB), all with low (<4hrs) postmortem intervals. RNA was profiled using Exiqon miRNA microarrays. Quantitative PCR for post-hoc replication was performed on separate cases (n=6 controls) and included RNA isolated from gray matter of MO, AC, primary somatosensory (BA 3), and dorsolateral prefrontal (BA 9) cortical regions.

Results

The miRNA expression patterns differed substantially according to …


A Customized Quantitative Pcr Microrna Panel Provides A Technically Robust Context For Studying Neurodegenerative Disease Biomarkers And Indicates A High Correlation Between Cerebrospinal Fluid And Choroid Plexus Microrna Expression, Wang-Xia Wang, David W. Fardo, Gregory A. Jicha, Peter T. Nelson Dec 2017

A Customized Quantitative Pcr Microrna Panel Provides A Technically Robust Context For Studying Neurodegenerative Disease Biomarkers And Indicates A High Correlation Between Cerebrospinal Fluid And Choroid Plexus Microrna Expression, Wang-Xia Wang, David W. Fardo, Gregory A. Jicha, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

MicroRNA (miRNA) expression varies in association with different tissue types and in diseases. Having been found in body fluids including blood and cerebrospinal fluid (CSF), miRNAs constitute potential biomarkers. CSF miRNAs have been proposed as biomarkers for neurodegenerative diseases; however, there is a lack of consensus about the best candidate miRNA biomarkers and there has been variability in results from different research centers, perhaps due to technical factors. Here, we sought to optimize technical parameters for CSF miRNA studies. We examined different RNA isolation methods and performed miRNA expression profiling with TaqMan® miRNA Arrays. More specifically, we developed a customized …


Novel Human Abcc9/Sur2 Brain-Expressed Transcripts And An Eqtl Relevant To Hippocampal Sclerosis Of Aging, Peter T. Nelson, Wang-Xia Wang, Bernard R. Wilfred, Angela Wei, James Dimayuga, Qingwei Huang, Eseosa T. Ighodaro, Sergey C. Artiushin, David W. Fardo Sep 2015

Novel Human Abcc9/Sur2 Brain-Expressed Transcripts And An Eqtl Relevant To Hippocampal Sclerosis Of Aging, Peter T. Nelson, Wang-Xia Wang, Bernard R. Wilfred, Angela Wei, James Dimayuga, Qingwei Huang, Eseosa T. Ighodaro, Sergey C. Artiushin, David W. Fardo

Sanders-Brown Center on Aging Faculty Publications

ABCC9 genetic polymorphisms are associated with increased risk for various human diseases including hippocampal sclerosis of aging. The main goals of this study were 1 > to detect the ABCC9 variants and define the specific 3′ untranslated region (3′UTR) for each variant in human brain, and 2 > to determine whether a polymorphism (rs704180) associated with risk for hippocampal sclerosis of aging pathology is also associated with variation in ABCC9 transcript expression and/or splicing. Rapid amplification of ABCC9 cDNA ends (3′RACE) provided evidence of novel 3′ UTR portions of ABCC9 in human brain. In silico and experimental studies were performed focusing on …


Mitochondria-Associated Micrornas In Rat Hippocampus Following Traumatic Brain Injury, Wang-Xia Wang, Nishant P. Visavadiya, Jignesh D. Pandya, Peter T. Nelson, Patrick G. Sullivan, Joe E. Springer Mar 2015

Mitochondria-Associated Micrornas In Rat Hippocampus Following Traumatic Brain Injury, Wang-Xia Wang, Nishant P. Visavadiya, Jignesh D. Pandya, Peter T. Nelson, Patrick G. Sullivan, Joe E. Springer

Sanders-Brown Center on Aging Faculty Publications

Traumatic brain injury (TBI) is a major cause of death and disability. However, the molecular events contributing to the pathogenesis are not well understood. Mitochondria serve as the powerhouse of cells, respond to cellular demands and stressors, and play an essential role in cell signaling, differentiation, and survival. There is clear evidence of compromised mitochondrial function following TBI; however, the underlying mechanisms and consequences are not clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally, and function as important mediators of neuronal development, synaptic plasticity, and neurodegeneration. Several miRNAs show altered expression following TBI; however, the …


Expression Of Mir-15/107 Family Micrornas In Human Tissues And Cultured Rat Brain Cells, Wang-Xia Wang, Robert J. Danaher, Craig S. Miller, Joseph R. Berger, Vega G. Nubia, Bernard R. Wilfred, Janna H. Neltner, Christopher M. Norris, Peter T. Nelson Feb 2014

Expression Of Mir-15/107 Family Micrornas In Human Tissues And Cultured Rat Brain Cells, Wang-Xia Wang, Robert J. Danaher, Craig S. Miller, Joseph R. Berger, Vega G. Nubia, Bernard R. Wilfred, Janna H. Neltner, Christopher M. Norris, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs), sharing a 5' AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression …


A Study Of Small Rnas From Cerebral Neocortex Of Pathology-Verified Alzheimer's Disease, Dementia With Lewy Bodies, Hippocampal Sclerosis, Frontotemporal Lobar Dementia, And Non-Demented Human Controls, Sébastien S. Hébert, Wang-Xia Wang, Qi Zhu, Peter T. Nelson Apr 2013

A Study Of Small Rnas From Cerebral Neocortex Of Pathology-Verified Alzheimer's Disease, Dementia With Lewy Bodies, Hippocampal Sclerosis, Frontotemporal Lobar Dementia, And Non-Demented Human Controls, Sébastien S. Hébert, Wang-Xia Wang, Qi Zhu, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

MicroRNAs (miRNAs) are small (20-22 nucleotides) regulatory non-coding RNAs that strongly influence gene expression. Most prior studies addressing the role of miRNAs in neurodegenerative diseases (NDs) have focused on individual diseases such as Alzheimer's disease (AD), making disease-to-disease comparisons impossible. Using RNA deep sequencing, we sought to analyze in detail the small RNAs (including miRNAs) in the temporal neocortex gray matter from non-demented controls (n = 2), AD (n = 5), dementia with Lewy bodies (n = 4), hippocampal sclerosis of aging (n = 4), and frontotemporal lobar dementia (FTLD) (n = 5) cases, together accounting for the most prevalent …


Patterns Of Microrna Expression In Normal And Early Alzheimer's Disease Human Temporal Cortex: White Matter Versus Gray Matter, Wang-Xia Wang, Qingwei Huang, Yanling Hu, Arnold J. Stromberg, Peter T. Nelson Feb 2011

Patterns Of Microrna Expression In Normal And Early Alzheimer's Disease Human Temporal Cortex: White Matter Versus Gray Matter, Wang-Xia Wang, Qingwei Huang, Yanling Hu, Arnold J. Stromberg, Peter T. Nelson

Pathology and Laboratory Medicine Faculty Publications

MicroRNA (miRNA) expression was assessed in human cerebral cortical gray matter (GM) and white matter (WM) in order to provide the first insights into the difference between GM and WM miRNA repertoires across a range of Alzheimer's disease (AD) pathology. RNA was isolated separately from GM and WM portions of superior and middle temporal cerebral cortex (N = 10 elderly females, postmortem interval < 4 h). miRNA profiling experiments were performed using state-of-the-art Exiqon© LNA-microarrays. A subset of miRNAs that appeared to be strongly expressed according to the microarrays did not appear to be conventional miRNAs according to Northern blot analyses. Some well-characterized miRNAs were substantially enriched in WM …


Focus On Rna Isolation: Obtaining Rna For Microrna (Mirna) Expression Profiling Analyses Of Neural Tissue, Wang-Xia Wang, Bernard R. Wilfred, Donald A. Baldwin, R. Benjamin Isett, Na Ren, Arnold J. Stromberg, Peter T. Nelson Nov 2008

Focus On Rna Isolation: Obtaining Rna For Microrna (Mirna) Expression Profiling Analyses Of Neural Tissue, Wang-Xia Wang, Bernard R. Wilfred, Donald A. Baldwin, R. Benjamin Isett, Na Ren, Arnold J. Stromberg, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

MicroRNAs (miRNAs) are present in all known plant and animal tissues and appear to be somewhat concentrated in the mammalian nervous system. Many different miRNA expression profiling platforms have been described. However, relatively little research has been published to establish the importance of 'upstream' variables in RNA isolation for neural miRNA expression profiling. We tested whether apparent changes in miRNA expression profiles may be associated with tissue processing, RNA isolation techniques, or different cell types in the sample. RNA isolation was performed on a single brain sample using eight different RNA isolation methods, and results were correlated using a conventional …


The Expression Of Microrna Mir-107 Decreases Early In Alzheimer's Disease And May Accelerate Disease Progression Through Regulation Of Β-Site Amyloid Precursor Protein-Cleaving Enzyme 1, Wang-Xia Wang, Bernard W. Rajeev, Arnold J. Stromberg, Na Ren, Guiliang Tang, Qingwei Huang, Isidore Rigoutsos, Peter T. Nelson Jan 2008

The Expression Of Microrna Mir-107 Decreases Early In Alzheimer's Disease And May Accelerate Disease Progression Through Regulation Of Β-Site Amyloid Precursor Protein-Cleaving Enzyme 1, Wang-Xia Wang, Bernard W. Rajeev, Arnold J. Stromberg, Na Ren, Guiliang Tang, Qingwei Huang, Isidore Rigoutsos, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

MicroRNAs (miRNAs) are small regulatory RNAs that participate in posttranscriptional gene regulation in a sequence-specific manner. However, little is understood about the role(s) of miRNAs in Alzheimer's disease (AD). We used miRNA expression microarrays on RNA extracted from human brain tissue from the University of Kentucky Alzheimer's Disease Center Brain Bank with near-optimal clinicopathological correlation. Cases were separated into four groups: elderly nondemented with negligible AD-type pathology, nondemented with incipient AD pathology, mild cognitive impairment (MCI) with moderate AD pathology, and AD. Among the AD-related miRNA expression changes, miR-107 was exceptional because miR-107 levels decreased significantly even in patients with …


Micrornas (Mirnas) In Neurodegenerative Diseases, Peter T. Nelson, Wang-Xia Wang, Bernard W. Rajeev Jan 2008

Micrornas (Mirnas) In Neurodegenerative Diseases, Peter T. Nelson, Wang-Xia Wang, Bernard W. Rajeev

Sanders-Brown Center on Aging Faculty Publications

Aging-related neurodegenerative diseases (NDs) are the culmination of many different genetic and environmental influences. Prior studies have shown that RNAs are pathologically altered during the inexorable course of some NDs. Recent evidence suggests that microRNAs (miRNAs) may be a contributing factor in neurodegeneration. miRNAs are brain-enriched, small (~22 nucleotides) non-coding RNAs that participate in mRNA translational regulation. Although discovered in the framework of worm development, miRNAs are now appreciated to play a dynamic role in many mammalian brain-related biochemical pathways, including neuroplasticity and stress responses. Research about miRNAs in the context of neurodegeneration is accumulating rapidly, and the goal of …


Energizing Mirna Research: A Review Of The Role Of Mirnas In Lipid Metabolism, With A Prediction That Mir-103/107 Regulates Human Metabolic Pathways, Bernard R. Wilfred, Wang-Xia Wang, Peter T. Nelson Jul 2007

Energizing Mirna Research: A Review Of The Role Of Mirnas In Lipid Metabolism, With A Prediction That Mir-103/107 Regulates Human Metabolic Pathways, Bernard R. Wilfred, Wang-Xia Wang, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

MicroRNAs (miRNAs) are powerful regulators of gene expression. Although first discovered in worm larvae, miRNAs play fundamental biological roles-including in humans-well beyond development. MiRNAs participate in the regulation of metabolism (including lipid metabolism) for all animal species studied. A review of the fascinating and fast-growing literature on miRNA regulation of metabolism can be parsed into three main categories: (1) adipocyte biochemistry and cell fate determination; (2) regulation of metabolic biochemistry in invertebrates; and (3) regulation of metabolic biochemistry in mammals. Most research into the 'function' of a given miRNA in metabolic pathways has concentrated on a given miRNA acting upon …