Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Medicine and Health Sciences

Mechanism-Driven Approaches And Novel Constructs For High Purity Rna Synthesis, Kithmie Malagodapathiranage Apr 2023

Mechanism-Driven Approaches And Novel Constructs For High Purity Rna Synthesis, Kithmie Malagodapathiranage

Doctoral Dissertations

RNA is poised to revolutionize medicine. By simply changing the sequence, one therapeutic can be converted into a wholly new one, with little or no change in manufacturing and formulation. While a single mRNA vaccine produced at massive scale can treat billions, the re-codability of RNA will also enable the widespread growth of personalized medicines. T7 RNA polymerase is highly efficient at the synthesis of therapeutic RNA, but is known to produce unintended RNA impurities during synthesis. These products arise from the encoded RNA rebinding the enzyme such that its 3’ end serves as a primer for extension. This leads …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Biomedical Applications Of Protein Films And Polymeric Nanomaterials, Sanjana Gopalakrishnan Oct 2022

Biomedical Applications Of Protein Films And Polymeric Nanomaterials, Sanjana Gopalakrishnan

Doctoral Dissertations

Biomaterials are widely applied for the diagnosis and treatment of numerous diseases. In addition to fulfilling specific biological functions, biomaterials must also be non-toxic, biocompatible, and sterilizable to be regarded as safe-for-use. Polymers are excellent candidates for fabricating functional biomaterials due to their wide availability and varied properties and may be natural or synthetic. Polymer precursors are fabricated into coatings, foams, scaffolds, gels, composites, and nanomaterials for several biomedical applications. This dissertation focuses on two types of polymeric biomaterials – protein-based materials and synthetic polymeric nanoparticles. Proteins are biopolymers that naturally occur with a variety of structural and functional properties. …


Game-Assisted Rehabilitation For Post-Stroke Survivors, Hee-Tae Jung Oct 2019

Game-Assisted Rehabilitation For Post-Stroke Survivors, Hee-Tae Jung

Doctoral Dissertations

Stroke is a leading cause of permanent impairments among its survivors. Although patients need to go through intensive, longitudinal rehabilitation to regain function before the stroke, patients show poor engagement and adherence to rehabilitation therapies which hampers their recovery. As a means to enhance stroke survivors' motivation, engagement, and adherence to intensive and longitudinal rehabilitation, the use of games in stroke rehabilitation has received attention from research and clinical communities. In order to realize this, it is important to take a holistic, end-to-end research approach that encompasses 1) the development of game technologies that are not only entertaining but also …


Hybridized Polymeric Nano-Assemblies: Key Insights Into Addressing Mdr Infections, Ryan Landis Mar 2019

Hybridized Polymeric Nano-Assemblies: Key Insights Into Addressing Mdr Infections, Ryan Landis

Doctoral Dissertations

Multidrug-resistant (MDR) bacteria contribute to more than 700,000 annual deaths world-wide. Millions more suffer from limb amputations or face high healthcare treatment costs where prolonged and costly therapeutic regimens are used to counter MDR infections. While there is an international push to develop novel and more powerful antimicrobials to address the impending threat, one particularly interesting approach that has re-emerged are essential oils, phytochemical extracts derived from plant sources. While their antimicrobial activity demonstrates a promising avenue, their stability in aqueous media, limits their practical use in or on mammals. Inspired by the versatility of polymer nanotechnology and the sustainability …


Colicins - A Sound Antimicrobial Approach For The Prevention Of Catheter-Associated Urinary Tract Infections, Sandra M. Roy Mar 2017

Colicins - A Sound Antimicrobial Approach For The Prevention Of Catheter-Associated Urinary Tract Infections, Sandra M. Roy

Doctoral Dissertations

The emergence and spread of antibiotic resistance has created one of the greatest challenges in fighting infectious disease. We address the rise of antibiotic-resistant pathogens by examining the evolutionary history of a class of resistance determinants, the SHV b-lactamases. We isolated the genes that encode the SHV beta-lactamases (blaSHV genes) from clinical settings and from an environment essentially devoid of antibiotic use. Our data suggests that, counter to current dogma, the use of antibiotics in the clinic is not creating these resistance genes; genes for antibiotic resistance already exist in nature and our use of antibiotics in clinical …


Engineering Novel Detection And Treatment Strategies For Bacterial Therapy Of Cancer, Jan T. Panteli Aug 2015

Engineering Novel Detection And Treatment Strategies For Bacterial Therapy Of Cancer, Jan T. Panteli

Doctoral Dissertations

Finding and treating cancer is difficult due to limited sensitivity and specificity of current detection and treatment strategies. Many chemotherapeutic drugs are small molecules that are limited by diffusion, making it difficult to reach cancer sites requiring high doses that lead to systemic toxicity and off-target effects. Tomographic detection techniques, like PET, MRI and CT, are good at identifying macroscopic lesions in the body but are limited in their ability to detect microscopic lesions. Biomarker detection strategies are extremely sensitive and able to identify ng/ml concentrations of protein, but are poor at discriminating between healthy and disease state levels due …