Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Medicine and Health Sciences

A Spline-Assisted Semiparametric Approach To Nonparametric Measurement Error Models, Fei Jiang, Yanyuan Ma Mar 2018

A Spline-Assisted Semiparametric Approach To Nonparametric Measurement Error Models, Fei Jiang, Yanyuan Ma

COBRA Preprint Series

Nonparametric estimation of the probability density function of a random variable measured with error is considered to be a difficult problem, in the sense that depending on the measurement error prop- erty, the estimation rate can be as slow as the logarithm of the sample size. Likewise, nonparametric estimation of the regression function with errors in the covariate suffers the same possibly slow rate. The traditional methods for both problems are based on deconvolution, where the slow convergence rate is caused by the quick convergence to zero of the Fourier transform of the measurement error density, which, unfortunately, appears in …


Hpcnmf: A High-Performance Toolbox For Non-Negative Matrix Factorization, Karthik Devarajan, Guoli Wang Feb 2016

Hpcnmf: A High-Performance Toolbox For Non-Negative Matrix Factorization, Karthik Devarajan, Guoli Wang

COBRA Preprint Series

Non-negative matrix factorization (NMF) is a widely used machine learning algorithm for dimension reduction of large-scale data. It has found successful applications in a variety of fields such as computational biology, neuroscience, natural language processing, information retrieval, image processing and speech recognition. In bioinformatics, for example, it has been used to extract patterns and profiles from genomic and text-mining data as well as in protein sequence and structure analysis. While the scientific performance of NMF is very promising in dealing with high dimensional data sets and complex data structures, its computational cost is high and sometimes could be critical for …


Computational Model For Survey And Trend Analysis Of Patients With Endometriosis : A Decision Aid Tool For Ebm, Salvo Reina, Vito Reina, Franco Ameglio, Mauro Costa, Alessandro Fasciani Feb 2014

Computational Model For Survey And Trend Analysis Of Patients With Endometriosis : A Decision Aid Tool For Ebm, Salvo Reina, Vito Reina, Franco Ameglio, Mauro Costa, Alessandro Fasciani

COBRA Preprint Series

Endometriosis is increasingly collecting worldwide attention due to its medical complexity and social impact. The European community has identified this as a “social disease”. A large amount of information comes from scientists, yet several aspects of this pathology and staging criteria need to be clearly defined on a suitable number of individuals. In fact, available studies on endometriosis are not easily comparable due to a lack of standardized criteria to collect patients’ informations and scarce definitions of symptoms. Currently, only retrospective surgical stadiation is used to measure pathology intensity, while the Evidence Based Medicine (EBM) requires shareable methods and correct …


Augmentation Of Propensity Scores For Medical Records-Based Research, Mikel Aickin Jun 2013

Augmentation Of Propensity Scores For Medical Records-Based Research, Mikel Aickin

COBRA Preprint Series

Therapeutic research based on electronic medical records suffers from the possibility of various kinds of confounding. Over the past 30 years, propensity scores have increasingly been used to try to reduce this possibility. In this article a gap is identified in the propensity score methodology, and it is proposed to augment traditional treatment-propensity scores with outcome-propensity scores, thereby removing all other aspects of common causes from the analysis of treatment effects.


Minimum Description Length And Empirical Bayes Methods Of Identifying Snps Associated With Disease, Ye Yang, David R. Bickel Nov 2010

Minimum Description Length And Empirical Bayes Methods Of Identifying Snps Associated With Disease, Ye Yang, David R. Bickel

COBRA Preprint Series

The goal of determining which of hundreds of thousands of SNPs are associated with disease poses one of the most challenging multiple testing problems. Using the empirical Bayes approach, the local false discovery rate (LFDR) estimated using popular semiparametric models has enjoyed success in simultaneous inference. However, the estimated LFDR can be biased because the semiparametric approach tends to overestimate the proportion of the non-associated single nucleotide polymorphisms (SNPs). One of the negative consequences is that, like conventional p-values, such LFDR estimates cannot quantify the amount of information in the data that favors the null hypothesis of no disease-association.

We …


Improving Statistical Analysis Of Prospective Clinical Trials In Stem Cell Transplantation. An Inventory Of New Approaches In Survival Analysis, Aurelien Latouche Jun 2010

Improving Statistical Analysis Of Prospective Clinical Trials In Stem Cell Transplantation. An Inventory Of New Approaches In Survival Analysis, Aurelien Latouche

COBRA Preprint Series

The CLINT project is an European Union funded project, run as a specific support action, under the sixth framework programme. It is a 2 year project aimed at supporting the European Group for Blood and Marrow Transplantation (EBMT) to develop its infrastructure for the conduct of trans-European clinical trials in accordance with the EU Clinical Trials Directive, and to facilitate International prospective clinical trials in stem cell transplantation. The initial task is to create an inventory of the existing biostatistical literature on new approaches to survival analyses that are not currently widely utilised. The estimation of survival endpoints is introduced, …


Joint Spatial Modeling Of Recurrent Infection And Growth With Processes Under Intermittent Observation, Farouk S. Nathoo Aug 2008

Joint Spatial Modeling Of Recurrent Infection And Growth With Processes Under Intermittent Observation, Farouk S. Nathoo

COBRA Preprint Series

In this article we present new statistical methodology for longitudinal studies in forestry where trees are subject to recurrent infection and the hazard of infection depends on tree growth over time. Understanding the nature of this dependence has important implications for reforestation and breeding programs. Challenges arise for statistical analysis in this setting with sampling schemes leading to panel data, exhibiting dynamic spatial variability, and incomplete covariate histories for hazard regression. In addition, data are collected at a large number of locations which poses computational difficulties for spatiotemporal modeling. A joint model for infection and growth is developed; wherein, a …


Causal Comparisons In Randomized Trials Of Two Active Treatments: The Effect Of Supervised Exercise To Promote Smoking Cessation, Jason Roy, Joseph W. Hogan Jul 2006

Causal Comparisons In Randomized Trials Of Two Active Treatments: The Effect Of Supervised Exercise To Promote Smoking Cessation, Jason Roy, Joseph W. Hogan

COBRA Preprint Series

In behavioral medicine trials, such as smoking cessation trials, two or more active treatments are often compared. Noncompliance by some subjects with their assigned treatment poses a challenge to the data analyst. Causal parameters of interest might include those defined by subpopulations based on their potential compliance status under each assignment, using the principal stratification framework (e.g., causal effect of new therapy compared to standard therapy among subjects that would comply with either intervention). Even if subjects in one arm do not have access to the other treatment(s), the causal effect of each treatment typically can only be identified from …