Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Medicine and Health Sciences

Fusion And Beyond: Satellite Cell Contributions To Loading-Induced Skeletal Muscle Adaptation, Kevin A. Murach, Christopher S. Fry, Esther E. Dupont-Versteegden, John J. Mccarthy, Charlotte A. Peterson Sep 2021

Fusion And Beyond: Satellite Cell Contributions To Loading-Induced Skeletal Muscle Adaptation, Kevin A. Murach, Christopher S. Fry, Esther E. Dupont-Versteegden, John J. Mccarthy, Charlotte A. Peterson

Center for Muscle Biology Faculty Publications

Satellite cells support adult skeletal muscle fiber adaptations to loading in numerous ways. The fusion of satellite cells, driven by cell-autonomous and/or extrinsic factors, contributes new myonuclei to muscle fibers, associates with load-induced hypertrophy, and may support focal membrane damage repair and long-term myonuclear transcriptional output. Recent studies have also revealed that satellite cells communicate within their niche to mediate muscle remodeling in response to resistance exercise, regulating the activity of numerous cell types through various mechanisms such as secretory signaling and cell–cell contact. Muscular adaptation to resistance and endurance activity can be initiated and sustained for a period of …


Chronic Muscle Weakness And Mitochondrial Dysfunction In The Absence Of Sustained Atrophy In A Preclinical Sepsis Model, Allison M. Owen, Samir P. Patel, Jeffrey D. Smith, Beverly K. Balasuriya, Stephanie F. Mori, Gregory S. Hawk, Arnold J. Stromberg, Naohide Kuriyama, Masao Kaneki, Alexander G. Rabchevsky, Timothy A. Butterfield, Karyn A. Esser, Charlotte A. Peterson, Marlene E. Starr, Hiroshi Saito Dec 2019

Chronic Muscle Weakness And Mitochondrial Dysfunction In The Absence Of Sustained Atrophy In A Preclinical Sepsis Model, Allison M. Owen, Samir P. Patel, Jeffrey D. Smith, Beverly K. Balasuriya, Stephanie F. Mori, Gregory S. Hawk, Arnold J. Stromberg, Naohide Kuriyama, Masao Kaneki, Alexander G. Rabchevsky, Timothy A. Butterfield, Karyn A. Esser, Charlotte A. Peterson, Marlene E. Starr, Hiroshi Saito

Physiology Faculty Publications

Chronic critical illness is a global clinical issue affecting millions of sepsis survivors annually. Survivors report chronic skeletal muscle weakness and development of new functional limitations that persist for years. To delineate mechanisms of sepsis-induced chronic weakness, we first surpassed a critical barrier by establishing a murine model of sepsis with ICU-like interventions that allows for the study of survivors. We show that sepsis survivors have profound weakness for at least 1 month, even after recovery of muscle mass. Abnormal mitochondrial ultrastructure, impaired respiration and electron transport chain activities, and persistent protein oxidative damage were evident in the muscle of …


Rapid And Robust Restoration Of Breathing Long After Spinal Cord Injury, Philippa M. Warren, Stephanie C. Steiger, Thomas E. Dick, Peter M. Macfarlane, Warren J. Alilain, Jerry Silver Nov 2018

Rapid And Robust Restoration Of Breathing Long After Spinal Cord Injury, Philippa M. Warren, Stephanie C. Steiger, Thomas E. Dick, Peter M. Macfarlane, Warren J. Alilain, Jerry Silver

Spinal Cord and Brain Injury Research Center Faculty Publications

There exists an abundance of barriers that hinder functional recovery following spinal cord injury, especially at chronic stages. Here, we examine the rescue of breathing up to 1.5 years following cervical hemisection in the rat. In spite of complete hemidiaphragm paralysis, a single injection of chondroitinase ABC in the phrenic motor pool restored robust and persistent diaphragm function while improving neuromuscular junction anatomy. This treatment strategy was more effective when applied chronically than when assessed acutely after injury. The addition of intermittent hypoxia conditioning further strengthened the ventilatory response. However, in a sub-population of animals, this combination treatment caused excess …


Enhancement Of Aging Rat Laryngeal Muscles With Endogenous Growth Factor Treatment, Joseph C. Stemple, Richard D. Andreatta, Tanya S. Seward, Vrushali Angadi, Maria Dietrich, Colleen A. Mcmullen May 2016

Enhancement Of Aging Rat Laryngeal Muscles With Endogenous Growth Factor Treatment, Joseph C. Stemple, Richard D. Andreatta, Tanya S. Seward, Vrushali Angadi, Maria Dietrich, Colleen A. Mcmullen

Physical Therapy Faculty Publications

Clinical evidence suggests that laryngeal muscle dysfunction is associated with human aging. Studies in animal models have reported morphological changes consistent with denervation in laryngeal muscles with age. Life‐long laryngeal muscle activity relies on cytoskeletal integrity and nerve–muscle communication at the neuromuscular junction (NMJ). It is thought that neurotrophins enhance neuromuscular transmission by increasing neurotransmitter release. We hypothesized that treatment with neurotrophin 4 (NTF4) would modify the morphology and functional innervation of aging rat laryngeal muscles. Fifty‐six Fischer 344xBrown Norway rats (6‐ and 30‐mo age groups) were used to evaluate to determine if NTF4, given systemically (n = 32) …


Mitochondria-Associated Micrornas In Rat Hippocampus Following Traumatic Brain Injury, Wang-Xia Wang, Nishant P. Visavadiya, Jignesh D. Pandya, Peter T. Nelson, Patrick G. Sullivan, Joe E. Springer Mar 2015

Mitochondria-Associated Micrornas In Rat Hippocampus Following Traumatic Brain Injury, Wang-Xia Wang, Nishant P. Visavadiya, Jignesh D. Pandya, Peter T. Nelson, Patrick G. Sullivan, Joe E. Springer

Sanders-Brown Center on Aging Faculty Publications

Traumatic brain injury (TBI) is a major cause of death and disability. However, the molecular events contributing to the pathogenesis are not well understood. Mitochondria serve as the powerhouse of cells, respond to cellular demands and stressors, and play an essential role in cell signaling, differentiation, and survival. There is clear evidence of compromised mitochondrial function following TBI; however, the underlying mechanisms and consequences are not clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally, and function as important mediators of neuronal development, synaptic plasticity, and neurodegeneration. Several miRNAs show altered expression following TBI; however, the …


Bmi-1 Absence Causes Premature Brain Degeneration, Guangliang Cao, Minxia Gu, Min Zhu, Junying Gao, Ying Yin, Charles Marshall, Ming Xiao, Jiong Ding, Dengshun Miao Feb 2012

Bmi-1 Absence Causes Premature Brain Degeneration, Guangliang Cao, Minxia Gu, Min Zhu, Junying Gao, Ying Yin, Charles Marshall, Ming Xiao, Jiong Ding, Dengshun Miao

Physical Therapy Faculty Publications

Bmi-1, a polycomb transcriptional repressor, is implicated in cell cycle regulation and cell senescence. Its absence results in generalized astrogliosis and epilepsy during the postnatal development, but the underlying mechanisms are poorly understood. Here, we demonstrate the occurrence of oxidative stress in the brain of four-week-old Bmi-1 null mice. The mice showed various hallmarks of neurodegeneration including synaptic loss, axonal demyelination, reactive gliosis and brain mitochondrial damage. Moreover, astroglial glutamate transporters and glutamine synthetase decreased in the Bmi-1 null hippocampus, which might contribute to the sporadic epileptic-like seizures in these mice. These results indicate that Bmi-1 is required for maintaining …


Sequential Alterations In Catabolic And Anabolic Gene Expression Parallel Pathological Changes During Progression Of Monoiodoacetate-Induced Arthritis, Jin Nam, Priyangi Perera, Jie Liu, Bjoern Rath, James Deschner, Robert Gassner, Timothy A. Butterfield, Sudha Agarwal Sep 2011

Sequential Alterations In Catabolic And Anabolic Gene Expression Parallel Pathological Changes During Progression Of Monoiodoacetate-Induced Arthritis, Jin Nam, Priyangi Perera, Jie Liu, Bjoern Rath, James Deschner, Robert Gassner, Timothy A. Butterfield, Sudha Agarwal

Physical Therapy Faculty Publications

Chronic inflammation is one of the major causes of cartilage destruction in osteoarthritis. Here, we systematically analyzed the changes in gene expression associated with the progression of cartilage destruction in monoiodoacetate-induced arthritis (MIA) of the rat knee. Sprague Dawley female rats were given intra-articular injection of monoiodoacetate in the knee. The progression of MIA was monitored macroscopically, microscopically and by micro-computed tomography. Grade 1 damage was observed by day 5 post-monoiodoacetate injection, progressively increasing to Grade 2 by day 9, and to Grade 3-3.5 by day 21. Affymetrix GeneChip was utilized to analyze the transcriptome-wide changes in gene expression, and …