Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Physiology

University of Kentucky

Series

Diabetes

Articles 1 - 3 of 3

Full-Text Articles in Medicine and Health Sciences

Fibroblast Growth Factor 19 Increases The Excitability Of Pre-Motor Glutamatergic Dorsal Vagal Complex Neurons From Hyperglycemic Mice, Jordan B. Wean, Bret N. Smith Nov 2021

Fibroblast Growth Factor 19 Increases The Excitability Of Pre-Motor Glutamatergic Dorsal Vagal Complex Neurons From Hyperglycemic Mice, Jordan B. Wean, Bret N. Smith

Physiology Faculty Publications

Intracerebroventricular administration of the protein hormone fibroblast growth factor 19 (FGF19) to the hindbrain produces potent antidiabetic effects in hyperglycemic mice that are likely mediated through a vagal parasympathetic mechanism. FGF19 increases the synaptic excitability of parasympathetic motor neurons in the dorsal motor nucleus of the vagus (DMV) from hyperglycemic, but not normoglycemic, mice but the source of this synaptic input is unknown. Neurons in the area postrema (AP) and nucleus tractus solitarius (NTS) express high levels of FGF receptors and exert glutamatergic control over the DMV. This study tested the hypothesis that FGF19 increases glutamate release in the DMV …


Methylglyoxal Requires Ac1 And Trpa1 To Produce Pain And Spinal Neuron Activation, Ryan B. Griggs, Don E. Laird, Renee R. Donahue, Weisi Fu, Bradley K. Taylor Dec 2017

Methylglyoxal Requires Ac1 And Trpa1 To Produce Pain And Spinal Neuron Activation, Ryan B. Griggs, Don E. Laird, Renee R. Donahue, Weisi Fu, Bradley K. Taylor

Physiology Faculty Publications

Methylglyoxal (MG) is a metabolite of glucose that may contribute to peripheral neuropathy and pain in diabetic patients. MG increases intracellular calcium in sensory neurons and produces behavioral nociception via the cation channel transient receptor potential ankyrin 1 (TRPA1). However, rigorous characterization of an animal model of methylglyoxal-evoked pain is needed, including testing whether methylglyoxal promotes negative pain affect. Furthermore, it remains unknown whether methylglyoxal is sufficient to activate neurons in the spinal cord dorsal horn, whether this requires TRPA1, and if the calcium-sensitive adenylyl cyclase 1 isoform (AC1) contributes to MG-evoked pain. We administered intraplantar methylglyoxal and then evaluated …


Prevention Of Renal Apob Retention Is Protective Against Diabetic Nephropathy: Role Of Tgf-Β Inhibition, Patricia G. Wilson, Joel C. Thompson, Meghan S. Yoder, Richard Charnigo, Lisa R. Tannock Sep 2017

Prevention Of Renal Apob Retention Is Protective Against Diabetic Nephropathy: Role Of Tgf-Β Inhibition, Patricia G. Wilson, Joel C. Thompson, Meghan S. Yoder, Richard Charnigo, Lisa R. Tannock

Internal Medicine Faculty Publications

Animal studies demonstrate that hyperlipidemia and renal lipid accumulation contribute to the pathogenesis of diabetic nephropathy (DN). We previously demonstrated that renal lipoproteins colocalize with biglycan, a renal proteoglycan. The purpose of this study was to determine whether prevention of renal lipid (apoB) accumulation attenuates DN. Biglycan-deficient and biglycan wild-type Ldlr−/− mice were made diabetic via streptozotocin and fed a high cholesterol diet. As biglycan deficiency is associated with elevated transforming growth factor-β (TGF-β), in some experiments mice were injected with either the TGF-β-neutralizing antibody, 1D11, or with 13C4, an irrelevant control antibody. Biglycan deficiency had no significant effect …