Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medicine and Health Sciences

Degradable Cross-Linked Nanoassemblies As Drug Carriers For Heat Shock Protein 90 Inhibitor 17-N-Allylamino-17-Demethoxy-Geldanamycin, Andrei G. Ponta, Shanjida Akter, Younsoo Bae Sep 2011

Degradable Cross-Linked Nanoassemblies As Drug Carriers For Heat Shock Protein 90 Inhibitor 17-N-Allylamino-17-Demethoxy-Geldanamycin, Andrei G. Ponta, Shanjida Akter, Younsoo Bae

Pharmaceutical Sciences Faculty Publications

Cross-linked nanoassemblies (CNAs) with a degradable core were prepared for sustained release of 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), a potent inhibitor of heat shock protein 90 (HSP90). The particle size of CNAs ranged between 100 and 250 nm, which changed depending on the cross-linking yields and drug entrapment method. CNAs with a 1% cross-linking yield entrapped 17-AAG in aqueous solutions, yet degraded in 3 hrs. CNAs entrapped 5.2 weight% of 17-AAG as the cross-linking yield increased to 10%, retaining more than 80% of particles for 24 hrs. CNAs with drugs entrapped after the cross-linking reactions were 100 nm and remained stable in both …


Multi-Functional Nanocarriers To Overcome Tumor Drug Resistance, Lara S. Jabr-Milane, Lilian E. Van Vlerkin, Sunita Yadav, Mansoor M. Amiji Sep 2011

Multi-Functional Nanocarriers To Overcome Tumor Drug Resistance, Lara S. Jabr-Milane, Lilian E. Van Vlerkin, Sunita Yadav, Mansoor M. Amiji

Mansoor M. Amiji

The development of resistance to variety of chemotherapeutic agents is one of the major challenges in effective cancer treatment. Tumor cells are able to generate a multi-drug resistance (MDR) phenotype due to microenvironmental selection pressures. This review addresses the use of nanotechnology-based delivery systems to overcome MDR in solid tumors. Our own work along with evidence from the literature illustrates the development of various types of engineered nanocarriers specifically designed to enhance tumor-targeted delivery through passive and active targeting strategies. Additionally, multi-functional nanocarriers are developed to enhance drug delivery and overcome MDR by either simultaneous or sequential delivery of resistance …


Nanofabrication Of Halloysite-Pcl Composite Scaffolds And Functionalization Of Titanium For Tissue Regeneration, Shraddha Parshottambhai Patel Jul 2011

Nanofabrication Of Halloysite-Pcl Composite Scaffolds And Functionalization Of Titanium For Tissue Regeneration, Shraddha Parshottambhai Patel

Doctoral Dissertations

Major medical needs may be achieved through regenerative medicine. Nanotechnology has triggered a research revolution in many important areas such as the biomedical sciences and bioengineering at the molecular level which has grown significantly due to the availability of new analytical applications and tools based on nanotechnology. Clinical conditions and diseases being targeted by nanotechnology research include burns, Alzheimer's and Parkinson's disease, implant failure, improved wound healing, birth defects, osteoporosis and congestive heart defects. Therapeutic use of growth factors and drugs to stimulate the production and/or function of endogenous cells represents a key area of regenerative medicine. The development of …


Ultrasonic Assisted Layer-By-Layer Assembly For Stable Nanocolloids Of Curcumin And Paclitaxel, Zhiguo Zheng Apr 2011

Ultrasonic Assisted Layer-By-Layer Assembly For Stable Nanocolloids Of Curcumin And Paclitaxel, Zhiguo Zheng

Doctoral Dissertations

Researchers have been trying to fight cancer with synthesis of new bioactive compounds but many of these novel drugs have low solubility in water and it is difficult to deliver them into a patient's body. One way of solving this particular problem is to use nanoscale drug delivery systems. In this dissertation, we describe using an ultrasonic assisted layer-by-layer encapsulation process to prepare anti-cancer drugs with 50∼200 nm particle size with designed coating to achieve sustained release and target delivery.

Two methods for systematic manufacture of low solubility anti-cancer drug nanoparticles were proposed: I) Top-down approach to breakdown larger drug …