Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Medicine and Health Sciences

Cyclin D1 Restrains Oncogene-Induced Autophagy By Regulating The Ampk-Lkb1 Signaling Axis., Mathew C. Casimiro, Gabriele Disante, Agnese Di Rocco, Emanuele Loro, Claudia Pupo, Timothy G. Pestell, Sara Bisetto, Marco A. Velasco-Velázquez, Xuanmao Jiao, Zhiping Li, Christine M. Kusminski, Erin L. Seifert, Chenguang Wang, Daniel Ly, Bin Zheng, Che-Hung Shen, Philipp E. Scherer, Richard Pestell Jul 2017

Cyclin D1 Restrains Oncogene-Induced Autophagy By Regulating The Ampk-Lkb1 Signaling Axis., Mathew C. Casimiro, Gabriele Disante, Agnese Di Rocco, Emanuele Loro, Claudia Pupo, Timothy G. Pestell, Sara Bisetto, Marco A. Velasco-Velázquez, Xuanmao Jiao, Zhiping Li, Christine M. Kusminski, Erin L. Seifert, Chenguang Wang, Daniel Ly, Bin Zheng, Che-Hung Shen, Philipp E. Scherer, Richard Pestell

Department of Cancer Biology Faculty Papers

Autophagy activated after DNA damage or other stresses mitigates cellular damage by removing damaged proteins, lipids, and organelles. Activation of the master metabolic kinase AMPK enhances autophagy. Here we report that cyclin D1 restrains autophagy by modulating the activation of AMPK. In cell models of human breast cancer or in a cyclin D1-deficient model, we observed a cyclin D1-mediated reduction in AMPK activation. Mechanistic investigations showed that cyclin D1 inhibited mitochondrial function, promoted glycolysis, and reduced activation of AMPK (pT172), possibly through a mechanism that involves cyclin D1-Cdk4/Cdk6 phosphorylation of LKB1. Our findings suggest how AMPK activation by cyclin D1 …


Yap And The Hippo Pathway In Pediatric Cancer., Atif Ahmed, Abdalla D. Mohamed, Melissa Gener, Weijie Li, Eugenio Taboada Jan 2017

Yap And The Hippo Pathway In Pediatric Cancer., Atif Ahmed, Abdalla D. Mohamed, Melissa Gener, Weijie Li, Eugenio Taboada

Manuscripts, Articles, Book Chapters and Other Papers

The Hippo pathway is an important signaling pathway that controls cell proliferation and apoptosis. It is evolutionarily conserved in mammals and is stimulated by cell-cell contact, inhibiting cell proliferation in response to increased cell density. During early embryonic development, the Hippo signaling pathway regulates organ development and size, and its functions result in the coordinated balance between proliferation, apoptosis, and differentiation. Its principal effectors, YAP and TAZ, regulate signaling by the embryonic stem cells and determine cell fate and histogenesis. Dysfunction of this pathway contributes to cancer development in adults and children. Emerging studies have shed light on the upregulation …


Proteoglycan Neofunctions: Regulation Of Inflammation And Autophagy In Cancer Biology., Liliana Schaefer, Claudia Tredup, Maria A. Gubbiotti, Renato V. Iozzo Jan 2017

Proteoglycan Neofunctions: Regulation Of Inflammation And Autophagy In Cancer Biology., Liliana Schaefer, Claudia Tredup, Maria A. Gubbiotti, Renato V. Iozzo

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Inflammation and autophagy have emerged as prominent issues in the context of proteoglycan signaling. In particular, two small, leucine-rich proteoglycans, biglycan and decorin, play pivotal roles in the regulation of these vital cellular pathways and, as such, are intrinsically involved in cancer initiation and progression. In this minireview, we will address novel functions of biglycan and decorin in inflammation and autophagy, and analyze new emerging signaling events triggered by these proteoglycans, which directly or indirectly modulate these processes. We will critically discuss the dual role of proteoglycan-driven inflammation and autophagy in tumor biology, and delineate the potential mechanisms through which …